These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
28. Ethanol-induced alterations in the function of cerebral GABAA receptor complex: effect on GABA-dependent 36Cl- influx into cerebral membrane vesicles. Ueha T; Kuriyama K Alcohol Alcohol; 1991; 26(1):17-24. PubMed ID: 1649606 [TBL] [Abstract][Full Text] [Related]
29. An examination of the role of TIQ alkaloids in alcohol intake: reinforcers, satiety agents or artifacts. Amit Z; Smith BR; Brown ZW; Williams RL Prog Clin Biol Res; 1982; 90():345-64. PubMed ID: 7202208 [No Abstract] [Full Text] [Related]
30. Ethanol and tetrahydroisoquinoline alkaloids do not produce narcotic discriminative stimulus effects. Shearman GT; Herz A Psychopharmacology (Berl); 1983; 81(3):224-7. PubMed ID: 6417709 [TBL] [Abstract][Full Text] [Related]
31. [Role of the catecholaminergic system of the brain in addiction to alcohol (review)]. Borisov MM Zh Nevropatol Psikhiatr Im S S Korsakova; 1985; 85(8):1244-9. PubMed ID: 2864770 [No Abstract] [Full Text] [Related]
32. Salsolinol, free of isosalsolinol, exerts ethanol-like motivational/sensitization effects leading to increases in ethanol intake. Quintanilla ME; Rivera-Meza M; Berrios-Cárcamo PA; Bustamante D; Buscaglia M; Morales P; Karahanian E; Herrera-Marschitz M; Israel Y Alcohol; 2014 Sep; 48(6):551-9. PubMed ID: 25086835 [TBL] [Abstract][Full Text] [Related]
33. Isoquinoline alkaloids as possible regulators of alcohol addiction. Blum K; Hamilton MG; Meyer EK; Hirst M; Marshall A Lancet; 1977 Apr; 1(8015):799-800. PubMed ID: 66592 [No Abstract] [Full Text] [Related]
35. Morphine and ethanol: selective depletion of regional brain calcium. Ross DH; Medina MA; Cardenas HL Science; 1974 Oct; 186(4158):63-5. PubMed ID: 4420821 [TBL] [Abstract][Full Text] [Related]
36. Effect of in vivo administration of naloxone on ATP-ase's enzyme systems of synaptic plasma membranes from rat cerebral cortex. Gorini A; Rancati A; D'Angelo A; Devecchi E; Villa RF Neurochem Res; 2000 Jun; 25(6):867-73. PubMed ID: 10944006 [TBL] [Abstract][Full Text] [Related]
37. Effects of salsolinol, a tetrahydroisoquinolone alkaloid, on multiple schedule performance in rats. Hymowitz N; Brezenoff HE Pharmacol Biochem Behav; 1978 Feb; 8(2):203-5. PubMed ID: 652829 [TBL] [Abstract][Full Text] [Related]
38. Inhibition of monoamine oxidases A and B by simple isoquinoline alkaloids: racemic and optically active 1,2,3,4-tetrahydro-, 3,4-dihydro-, and fully aromatic isoquinolines. Bembenek ME; Abell CW; Chrisey LA; Rozwadowska MD; Gessner W; Brossi A J Med Chem; 1990 Jan; 33(1):147-52. PubMed ID: 2296014 [TBL] [Abstract][Full Text] [Related]
39. Salsolinol and catecholamines in human brain and their relation to alcoholism. Sjöquist B; Eriksson A; Winblad B Prog Clin Biol Res; 1982; 90():57-67. PubMed ID: 7111326 [No Abstract] [Full Text] [Related]
40. Adaptative changes in Ca++-membrane interactions following chronic ethanol exposure. Ross DH Adv Exp Med Biol; 1977; 85A():459-71. PubMed ID: 562606 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]