BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35007844)

  • 1. Establishment of a steroid binding assay for membrane progesterone receptor alpha (PAQR7) by using graphene quantum dots (GQDs).
    Jyoti MMS; Rana MR; Ali MH; Tokumoto T
    Biochem Biophys Res Commun; 2022 Feb; 592():1-6. PubMed ID: 35007844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of a steroid binding assay for goldfish membrane progesterone receptor (mPR) by coupling with graphene quantum dots (GQDs).
    Hossain F; Hossain S; Jyoti MS; Omori Y; Tokumoto T
    Fish Physiol Biochem; 2024 Jun; 50(3):1331-1339. PubMed ID: 38329580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of a graphene quantum dot (GQD) based steroid binding assay for the nuclear progesterone receptor (pgr).
    Hossain MF; Hossain S; Sarwar Jyoti MM; Omori Y; Ahamed S; Tokumoto T
    Biochem Biophys Rep; 2024 Jul; 38():101691. PubMed ID: 38571552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between steroid binding to membrane progesterone receptor alpha (mPRalpha) and to nuclear progesterone receptor: correlation with physicochemical properties assessed by comparative molecular field analysis and identification of mPRalpha-specific agonists.
    Kelder J; Azevedo R; Pang Y; de Vlieg J; Dong J; Thomas P
    Steroids; 2010 Apr; 75(4-5):314-22. PubMed ID: 20096719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular modeling, mutational analysis and steroid specificity of the ligand binding pocket of mPRĪ± (PAQR7): Shared ligand binding with AdipoR1 and its structural basis.
    Kelder J; Pang Y; Dong J; Schaftenaar G; Thomas P
    J Steroid Biochem Mol Biol; 2022 May; 219():106082. PubMed ID: 35189329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A graphene quantum dot@Fe
    Su X; Chan C; Shi J; Tsang MK; Pan Y; Cheng C; Gerile O; Yang M
    Biosens Bioelectron; 2017 Jun; 92():489-495. PubMed ID: 27839733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of biosurfactant-based graphene quantum dot conjugate as a novel and fluorescent theranostic tool for cancer.
    Bansal S; Singh J; Kumari U; Kaur IP; Barnwal RP; Kumar R; Singh S; Singh G; Chatterjee M
    Int J Nanomedicine; 2019; 14():809-818. PubMed ID: 30774335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of binding between diethylstilbestrol (DES) and the goldfish (
    Hossain MF; Mustary UH; Tokumoto T
    Toxicol Mech Methods; 2024 Jun; 34(5):563-571. PubMed ID: 38317456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of graphene quantum dots by varying the properties of graphene oxide for fluorescence detection of picric acid.
    Mukherjee D; Das P; Kundu S; Mandal B
    Chemosphere; 2022 Aug; 300():134432. PubMed ID: 35398072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of electrostatic potential polarization in the translocation of graphene quantum dots across membranes.
    Tang X; Zhang S; Zhou H; Zhou B; Liu S; Yang Z
    Nanoscale; 2020 Jan; 12(4):2732-2739. PubMed ID: 31951244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene Quantum Dot Oxidation Governs Noncovalent Biopolymer Adsorption.
    Jeong S; Pinals RL; Dharmadhikari B; Song H; Kalluri A; Debnath D; Wu Q; Ham MH; Patra P; Landry MP
    Sci Rep; 2020 Apr; 10(1):7074. PubMed ID: 32341425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging.
    Nasrollahi F; Koh YR; Chen P; Varshosaz J; Khodadadi AA; Lim S
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():247-257. PubMed ID: 30423706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hit Multiple Targets with One Arrow: Pb
    Nandi N; Gaurav S; Sarkar P; Kumar S; Sahu K
    ACS Appl Bio Mater; 2021 Oct; 4(10):7605-7614. PubMed ID: 35006709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable nanoprobe based on MnO
    Song ZL; Dai X; Li M; Teng H; Song Z; Xie D; Luo X
    Mikrochim Acta; 2018 Oct; 185(10):485. PubMed ID: 30276483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A ratiometric fluorescence probe based on graphene quantum dots and o-phenylenediamine for highly sensitive detection of acetylcholinesterase activity.
    Ye M; Lin B; Yu Y; Li H; Wang Y; Zhang L; Cao Y; Guo M
    Mikrochim Acta; 2020 Aug; 187(9):511. PubMed ID: 32833082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vanadium coordination compounds loaded on graphene quantum dots (GQDs) exhibit improved pharmaceutical properties and enhanced anti-diabetic effects.
    Du J; Feng B; Dong Y; Zhao M; Yang X
    Nanoscale; 2020 Apr; 12(16):9219-9230. PubMed ID: 32307476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent Functionalization of Bovine Serum Albumin with Graphene Quantum Dots for Stereospecific Molecular Recognition.
    Ye Q; Guo L; Wu D; Yang B; Tao Y; Deng L; Kong Y
    Anal Chem; 2019 Sep; 91(18):11864-11871. PubMed ID: 31415149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the molecular interaction of graphene quantum dots with human serum albumin: combined spectroscopic and electrochemical approaches.
    Huang S; Qiu H; Lu S; Zhu F; Xiao Q
    J Hazard Mater; 2015 Mar; 285():18-26. PubMed ID: 25462867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of the interaction of graphene quantum dots with lipase for biological applications.
    Mohammadi A; Rahmandoust M; Mirzajani F; Azadkhah Shalmani A; Raoufi M
    J Biomed Mater Res B Appl Biomater; 2020 Aug; 108(6):2471-2483. PubMed ID: 32083405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ratio fluorescence analysis of T4 polynucleotide kinase activity based on the formation of a graphene quantum dot-copper nanocluster nanohybrid.
    Wang M; Kong D; Su D; Liu Y; Su X
    Nanoscale; 2019 Aug; 11(29):13903-13908. PubMed ID: 31304938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.