These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 35007844)
1. Establishment of a steroid binding assay for membrane progesterone receptor alpha (PAQR7) by using graphene quantum dots (GQDs). Jyoti MMS; Rana MR; Ali MH; Tokumoto T Biochem Biophys Res Commun; 2022 Feb; 592():1-6. PubMed ID: 35007844 [TBL] [Abstract][Full Text] [Related]
2. Establishment of a steroid binding assay for goldfish membrane progesterone receptor (mPR) by coupling with graphene quantum dots (GQDs). Hossain F; Hossain S; Jyoti MS; Omori Y; Tokumoto T Fish Physiol Biochem; 2024 Jun; 50(3):1331-1339. PubMed ID: 38329580 [TBL] [Abstract][Full Text] [Related]
3. Establishment of a graphene quantum dot (GQD) based steroid binding assay for the nuclear progesterone receptor (pgr). Hossain MF; Hossain S; Sarwar Jyoti MM; Omori Y; Ahamed S; Tokumoto T Biochem Biophys Rep; 2024 Jul; 38():101691. PubMed ID: 38571552 [TBL] [Abstract][Full Text] [Related]
4. Comparison between steroid binding to membrane progesterone receptor alpha (mPRalpha) and to nuclear progesterone receptor: correlation with physicochemical properties assessed by comparative molecular field analysis and identification of mPRalpha-specific agonists. Kelder J; Azevedo R; Pang Y; de Vlieg J; Dong J; Thomas P Steroids; 2010 Apr; 75(4-5):314-22. PubMed ID: 20096719 [TBL] [Abstract][Full Text] [Related]
5. Molecular modeling, mutational analysis and steroid specificity of the ligand binding pocket of mPRĪ± (PAQR7): Shared ligand binding with AdipoR1 and its structural basis. Kelder J; Pang Y; Dong J; Schaftenaar G; Thomas P J Steroid Biochem Mol Biol; 2022 May; 219():106082. PubMed ID: 35189329 [TBL] [Abstract][Full Text] [Related]
6. A graphene quantum dot@Fe Su X; Chan C; Shi J; Tsang MK; Pan Y; Cheng C; Gerile O; Yang M Biosens Bioelectron; 2017 Jun; 92():489-495. PubMed ID: 27839733 [TBL] [Abstract][Full Text] [Related]
7. Development of biosurfactant-based graphene quantum dot conjugate as a novel and fluorescent theranostic tool for cancer. Bansal S; Singh J; Kumari U; Kaur IP; Barnwal RP; Kumar R; Singh S; Singh G; Chatterjee M Int J Nanomedicine; 2019; 14():809-818. PubMed ID: 30774335 [TBL] [Abstract][Full Text] [Related]
8. Evidence of binding between diethylstilbestrol (DES) and the goldfish ( Hossain MF; Mustary UH; Tokumoto T Toxicol Mech Methods; 2024 Jun; 34(5):563-571. PubMed ID: 38317456 [TBL] [Abstract][Full Text] [Related]
9. Engineering of graphene quantum dots by varying the properties of graphene oxide for fluorescence detection of picric acid. Mukherjee D; Das P; Kundu S; Mandal B Chemosphere; 2022 Aug; 300():134432. PubMed ID: 35398072 [TBL] [Abstract][Full Text] [Related]
10. The role of electrostatic potential polarization in the translocation of graphene quantum dots across membranes. Tang X; Zhang S; Zhou H; Zhou B; Liu S; Yang Z Nanoscale; 2020 Jan; 12(4):2732-2739. PubMed ID: 31951244 [TBL] [Abstract][Full Text] [Related]
12. Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging. Nasrollahi F; Koh YR; Chen P; Varshosaz J; Khodadadi AA; Lim S Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():247-257. PubMed ID: 30423706 [TBL] [Abstract][Full Text] [Related]
13. Hit Multiple Targets with One Arrow: Pb Nandi N; Gaurav S; Sarkar P; Kumar S; Sahu K ACS Appl Bio Mater; 2021 Oct; 4(10):7605-7614. PubMed ID: 35006709 [TBL] [Abstract][Full Text] [Related]
14. Biodegradable nanoprobe based on MnO Song ZL; Dai X; Li M; Teng H; Song Z; Xie D; Luo X Mikrochim Acta; 2018 Oct; 185(10):485. PubMed ID: 30276483 [TBL] [Abstract][Full Text] [Related]
15. A ratiometric fluorescence probe based on graphene quantum dots and o-phenylenediamine for highly sensitive detection of acetylcholinesterase activity. Ye M; Lin B; Yu Y; Li H; Wang Y; Zhang L; Cao Y; Guo M Mikrochim Acta; 2020 Aug; 187(9):511. PubMed ID: 32833082 [TBL] [Abstract][Full Text] [Related]
16. Vanadium coordination compounds loaded on graphene quantum dots (GQDs) exhibit improved pharmaceutical properties and enhanced anti-diabetic effects. Du J; Feng B; Dong Y; Zhao M; Yang X Nanoscale; 2020 Apr; 12(16):9219-9230. PubMed ID: 32307476 [TBL] [Abstract][Full Text] [Related]
17. Covalent Functionalization of Bovine Serum Albumin with Graphene Quantum Dots for Stereospecific Molecular Recognition. Ye Q; Guo L; Wu D; Yang B; Tao Y; Deng L; Kong Y Anal Chem; 2019 Sep; 91(18):11864-11871. PubMed ID: 31415149 [TBL] [Abstract][Full Text] [Related]
18. Study on the molecular interaction of graphene quantum dots with human serum albumin: combined spectroscopic and electrochemical approaches. Huang S; Qiu H; Lu S; Zhu F; Xiao Q J Hazard Mater; 2015 Mar; 285():18-26. PubMed ID: 25462867 [TBL] [Abstract][Full Text] [Related]
19. Optimization of the interaction of graphene quantum dots with lipase for biological applications. Mohammadi A; Rahmandoust M; Mirzajani F; Azadkhah Shalmani A; Raoufi M J Biomed Mater Res B Appl Biomater; 2020 Aug; 108(6):2471-2483. PubMed ID: 32083405 [TBL] [Abstract][Full Text] [Related]
20. Ratio fluorescence analysis of T4 polynucleotide kinase activity based on the formation of a graphene quantum dot-copper nanocluster nanohybrid. Wang M; Kong D; Su D; Liu Y; Su X Nanoscale; 2019 Aug; 11(29):13903-13908. PubMed ID: 31304938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]