These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35007906)

  • 1. In situ SERS monitoring of plasmon-driven catalytic reaction on gap-controlled Ag nanoparticle arrays under 785 nm irradiation.
    Liu Y; Zhang L; Liu X; Zhang Y; Yan Y; Zhao Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120803. PubMed ID: 35007906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarization-dependent surface plasmon-driven catalytic reaction on a single nanowire monitored by SERS.
    Li Z; Gao Y; Zhang L; Fang Y; Wang P
    Nanoscale; 2018 Oct; 10(39):18720-18727. PubMed ID: 30270366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays.
    Dai ZG; Xiao XH; Zhang YP; Ren F; Wu W; Zhang SF; Zhou J; Mei F; Jiang CZ
    Nanotechnology; 2012 Aug; 23(33):335701. PubMed ID: 22842646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-Situ Monitoring the SERS Spectra of para-Aminothiophenol Adsorbed on Plasmon-Tunable Au@Ag Core-Shell Nanostars.
    Ke Y; Chen B; Hu M; Zhou N; Huang Z; Meng G
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the SERS activity and plasmon-driven reduction of p-nitrothiophenol on a Ag@MoS
    Miao P; Ma Y; Sun M; Li J; Xu P
    Faraday Discuss; 2019 May; 214(0):297-307. PubMed ID: 30806386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnesium Nanoparticles for Surface-Enhanced Raman Scattering and Plasmon-Driven Catalysis.
    Ten A; Lomonosov V; Boukouvala C; Ringe E
    ACS Nano; 2024 Jul; 18(28):18785-18799. PubMed ID: 38963330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable plasmon-induced catalytic reaction by surface-enhanced and tip-enhanced Raman spectroscopy.
    Liu Y; Zhao Y; Zhang L; Yan Y; Jiang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():539-546. PubMed ID: 31078821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-mediated photocatalytic conversion in Au or Ag nanorod aggregates by surface-enhanced Raman spectroscopy.
    Linh Truong H; Le TD; Lee J; Choi HK
    Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan; 324():124947. PubMed ID: 39163769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The oxidant and laser power-dependent plasmon-driven surface photocatalysis reaction of p-aminothiophenol dimerizing into p,p'-dimercaptoazobenzene on Au nanoparticles.
    Tan E; Yin P; Yu C; Yu G; Zhao C
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Sep; 166():15-18. PubMed ID: 27179296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-driven surface catalysis in hybridized plasmonic gap modes.
    Wang H; Liu T; Huang Y; Fang Y; Liu R; Wang S; Wen W; Sun M
    Sci Rep; 2014 Nov; 4():7087. PubMed ID: 25404139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-driven photocatalytic properties based on the surface of gold nanostar particles.
    Zhang Y; Zhao C; Wang X; Sun S; Zhang D; Zhang L; Fang Y; Wang P
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120240. PubMed ID: 34352503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigate on plasma catalytic reaction of 4-nitrobenzenethiol on Ag@SiO
    Qi X; Wei Y; Jiang C; Zhang L; Wang P; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 237():118362. PubMed ID: 32335497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SERS spectral evolution of azo-reactions mediated by plasmonic Au@Ag core-shell nanorods.
    Hu M; Huang Z; Liu R; Zhou N; Tang H; Meng G
    Nanoscale Adv; 2022 Nov; 4(22):4730-4738. PubMed ID: 36381518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot Electron-Driven Photocatalysis Using Sub-5 nm Gap Plasmonic Nanofinger Arrays.
    Wang Y; Chen B; Meng D; Song B; Liu Z; Hu P; Yang H; Ou TH; Liu F; Pi H; Pi I; Pi I; Wu W
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binary "island" shaped arrays with high-density hot spots for surface-enhanced Raman scattering substrates.
    Zhao W; Xiao S; Zhang Y; Pan D; Wen J; Qian X; Wang D; Cao H; He W; Quan M; Yang Z
    Nanoscale; 2018 Aug; 10(29):14220-14229. PubMed ID: 30009308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiating Plasmon-Enhanced Chemical Reactions on AgPd Hollow Nanoplates through Surface-Enhanced Raman Spectroscopy.
    Jiao S; Dai K; Besteiro LV; Gao H; Chen X; Wang W; Zhang Y; Liu C; Pérez-Juste I; Pérez-Juste J; Pastoriza-Santos I; Zheng G
    ACS Catal; 2024 May; 14(9):6799-6806. PubMed ID: 38721378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in situ SERS study of plasmonic nanochemistry based on bifunctional "hedgehog-like" arrays.
    Guan Y; Wang Z; Gu P; Wang Y; Zhang W; Zhang G
    Nanoscale; 2019 May; 11(19):9422-9428. PubMed ID: 31038523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon catalytic PATP coupling reaction on Ag-NPs/graphite studied
    Zhong H; Chen J; Chen J; Tao R; Jiang J; Hu Y; Xu J; Zhang T; Liao J
    Phys Chem Chem Phys; 2020 Oct; 22(41):23482-23490. PubMed ID: 32820299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.
    Brandt NC; Keller EL; Frontiera RR
    J Phys Chem Lett; 2016 Aug; 7(16):3179-85. PubMed ID: 27488515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ SERS study of surface plasmon resonance enhanced photocatalytic reactions using bifunctional Au@CdS core-shell nanocomposites.
    Yang JL; Xu J; Ren H; Sun L; Xu QC; Zhang H; Li JF; Tian ZQ
    Nanoscale; 2017 May; 9(19):6254-6258. PubMed ID: 28463374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.