These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35008012)

  • 1. Functional mechanical attributes of natural and synthetic gel-based scaffolds in tissue engineering: strain-stiffening effects on apparent elastic modulus and compressive toughness.
    Schiavi A; Cuccaro R; Troia A
    J Mech Behav Biomed Mater; 2022 Feb; 126():105066. PubMed ID: 35008012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of non-linearity on cell-ECM interactions.
    Wen Q; Janmey PA
    Exp Cell Res; 2013 Oct; 319(16):2481-9. PubMed ID: 23748051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications.
    Karimi A; Navidbakhsh M
    Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures.
    Ali D; Sen S
    J Mech Behav Biomed Mater; 2017 Nov; 75():262-270. PubMed ID: 28759838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Textile-based sandwich scaffold using wet electrospun yarns for skin tissue engineering.
    Jiang C; Wang K; Liu Y; Zhang C; Wang B
    J Mech Behav Biomed Mater; 2021 Jul; 119():104499. PubMed ID: 33857876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing Cell Seeding Density Improves Elastin Expression and Mechanical Properties in Collagen Gel-Based Scaffolds Cellularized with Smooth Muscle Cells.
    Camasão DB; Pezzoli D; Loy C; Kumra H; Levesque L; Reinhardt DP; Candiani G; Mantovani D
    Biotechnol J; 2019 Mar; 14(3):e1700768. PubMed ID: 29802760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering.
    Wright LD; Young RT; Andric T; Freeman JW
    Biomed Mater; 2010 Oct; 5(5):055006. PubMed ID: 20844321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanically-enhanced polysaccharide-based scaffolds for tissue engineering of soft tissues.
    Bombaldi de Souza RF; Bombaldi de Souza FC; Rodrigues C; Drouin B; Popat KC; Mantovani D; Moraes ÂM
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():364-375. PubMed ID: 30423719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mathematical model for the determination of forming tissue moduli in needled-nonwoven scaffolds.
    Soares JS; Zhang W; Sacks MS
    Acta Biomater; 2017 Mar; 51():220-236. PubMed ID: 28063987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanical properties of PLC-bioactive glass scaffolds fabricated via BioExtrusion.
    Fiedler T; Videira AC; Bártolo P; Strauch M; Murch GE; Ferreira JM
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():288-93. PubMed ID: 26354266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of mechanical properties of soft tissue scaffolds by atomic force microscopy nanoindentation.
    Zhu Y; Dong Z; Wejinya UC; Jin S; Ye K
    J Biomech; 2011 Sep; 44(13):2356-61. PubMed ID: 21794867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biaxial mechanics of 3D fiber deposited ply-laminate scaffolds for soft tissue engineering part II: Finite element analyses.
    Page M; Puttlitz C
    J Mech Behav Biomed Mater; 2019 Dec; 100():103395. PubMed ID: 31415944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Testing of Cartilage Constructs.
    Olvera D; Daly A; Kelly DJ
    Methods Mol Biol; 2015; 1340():279-87. PubMed ID: 26445846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bridging the Gap in Ashby's Map for Soft Material Properties for Tissue Engineering.
    Lou L; Paolino L; Agarwal A
    ACS Appl Mater Interfaces; 2023 May; 15(20):24197-24208. PubMed ID: 37178192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study on the elastic modulus of polyvinyl alcohol sponge using different stress-strain definitions.
    Karimi A; Navidbakhsh M; Alizadeh M; Razaghi R
    Biomed Tech (Berl); 2014 Oct; 59(5):439-46. PubMed ID: 24706422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of decellularized meniscus extracellular matrix and gelatin/chitosan scaffolds for meniscus tissue engineering.
    Yu Z; Lili J; Tiezheng Z; Li S; Jianzhuang W; Haichao D; Kedong S; Tianqing L
    Biomed Mater Eng; 2019; 30(2):125-132. PubMed ID: 30741661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain-rate and temperature dependent material properties of Agar and Gellan Gum used in biomedical applications.
    Schiavi A; Cuccaro R; Troia A
    J Mech Behav Biomed Mater; 2016 Jan; 53():119-130. PubMed ID: 26318572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan/β-1,3-glucan/calcium phosphate ceramics composites--novel cell scaffolds for bone tissue engineering application.
    Przekora A; Palka K; Ginalska G
    J Biotechnol; 2014 Jul; 182-183():46-53. PubMed ID: 24815684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering.
    Kumbar SG; Toti US; Deng M; James R; Laurencin CT; Aravamudhan A; Harmon M; Ramos DM
    Biomed Mater; 2011 Dec; 6(6):065005. PubMed ID: 22089383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering.
    Eshraghi S; Das S
    Acta Biomater; 2012 Aug; 8(8):3138-43. PubMed ID: 22522129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.