These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Ratiometric thermometry using single Er Kolesnikov IE; Mamonova DV; Kurochkin MA; Medvedev VA; Bai G; Kolesnikov EY Nanotechnology; 2022 Nov; 34(5):. PubMed ID: 36240676 [TBL] [Abstract][Full Text] [Related]
8. Advanced temperature sensing with Er Kachou I; Saidi K; Ekim U; Dammak M; Çelikbilek Ersundu M; Ersundu AE Dalton Trans; 2024 Jan; 53(5):2357-2372. PubMed ID: 38214574 [TBL] [Abstract][Full Text] [Related]
9. NIR luminescence lifetime nanothermometry based on phonon assisted Yb Maciejewska K; Bednarkiewicz A; Marciniak L Nanoscale Adv; 2021 Aug; 3(17):4918-4925. PubMed ID: 36132339 [TBL] [Abstract][Full Text] [Related]
10. Investigation on anomalous thermal enhancement and temperature sensing properties of Zn Liu H; Wang H; Zheng X; Wang P; Zhang Y Dalton Trans; 2022 Aug; 51(34):13106-13118. PubMed ID: 35975711 [TBL] [Abstract][Full Text] [Related]
11. Er Hasegawa T; Takahashi Y; Goto T; Sato Y; Okawa A; Yin S Dalton Trans; 2024 Aug; 53(32):13617-13627. PubMed ID: 39082101 [TBL] [Abstract][Full Text] [Related]
12. Dual functionality luminescence thermometry with Gd Ma Y; Aierken A; Wang Y; Meijerink A J Colloid Interface Sci; 2023 May; 638():640-649. PubMed ID: 36774877 [TBL] [Abstract][Full Text] [Related]
13. The Butterfly Effect: Multifaceted Consequences of Sensitizer Concentration Change in Phase Transition-based Luminescent Thermometer of LiYO Marciniak L; Piotrowski W; Szymczak M; Brites CDS; Kinzhybalo V; Suo H; Carlos LD; Wang F ACS Appl Mater Interfaces; 2024 May; 16(20):26439-26449. PubMed ID: 38739688 [TBL] [Abstract][Full Text] [Related]
14. Highly Sensitive Upconverting Nanoplatform for Luminescent Thermometry from Ambient to Cryogenic Temperature. Mukhuti K; Adusumalli VNKB; Koppisetti HVSRM; Bansal B; Mahalingam V Chemphyschem; 2020 Aug; 21(15):1731-1736. PubMed ID: 32400937 [TBL] [Abstract][Full Text] [Related]
15. A novel optical thermometry strategy based on emission of Tm Saidi K; Dammak M; Soler-Carracedo K; Martín IR Dalton Trans; 2022 Mar; 51(13):5108-5117. PubMed ID: 35266463 [TBL] [Abstract][Full Text] [Related]
16. Near-Infrared-to-Near-Infrared Optical Thermometer BaY Xiang G; Yang M; Liu Z; Wang Y; Jiang S; Zhou X; Li L; Ma L; Wang X; Zhang J Inorg Chem; 2022 Apr; 61(13):5425-5432. PubMed ID: 35332776 [TBL] [Abstract][Full Text] [Related]
17. The dual-model up/down-conversion green luminescence of NaSrGd(MoO El Abidine Aly Taleb Z; Saidi K; Dammak M RSC Adv; 2024 Mar; 14(12):8366-8377. PubMed ID: 38476174 [TBL] [Abstract][Full Text] [Related]
18. Influence of Doping and Excitation Powers on Optical Thermometry in Yb Wang X; Wang Y; Bu Y; Yan X; Wang J; Cai P; Vu T; Seo HJ Sci Rep; 2017 Feb; 7():43383. PubMed ID: 28240270 [TBL] [Abstract][Full Text] [Related]
19. Dual-mode optical ratiometric thermometry using Pr Aly Taleb ZEA; Saidi K; Dammak M Dalton Trans; 2023 Dec; 52(47):18069-18081. PubMed ID: 37994109 [TBL] [Abstract][Full Text] [Related]
20. Engineering Visible to Near-Infrared Luminescence through a Selective Doping Strategy for High-Performance Temperature Sensing. Dai M; Li K; Xu H; Fu Z Inorg Chem; 2024 Jul; 63(29):13413-13424. PubMed ID: 38961680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]