These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 35008079)

  • 41. EEG changes during passive movements improve the motor imagery feature extraction in BCIs-based sensory feedback calibration.
    Delisle-Rodriguez D; Silva L; Bastos-Filho T
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36716494
    [No Abstract]   [Full Text] [Related]  

  • 42. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.
    Siuly ; Li Y; Paul Wen P
    Comput Methods Programs Biomed; 2014 Mar; 113(3):767-80. PubMed ID: 24440135
    [TBL] [Abstract][Full Text] [Related]  

  • 43. EEG datasets for motor imagery brain-computer interface.
    Cho H; Ahn M; Ahn S; Kwon M; Jun SC
    Gigascience; 2017 Jul; 6(7):1-8. PubMed ID: 28472337
    [TBL] [Abstract][Full Text] [Related]  

  • 44. EEG-Based Brain-Computer Interface for Decoding Motor Imagery Tasks within the Same Hand Using Choi-Williams Time-Frequency Distribution.
    Alazrai R; Alwanni H; Baslan Y; Alnuman N; Daoud MI
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28832513
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Feature extraction of four-class motor imagery EEG signals based on functional brain network.
    Ai Q; Chen A; Chen K; Liu Q; Zhou T; Xin S; Ji Z
    J Neural Eng; 2019 Apr; 16(2):026032. PubMed ID: 30699389
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Feature Selection Using Extreme Gradient Boosting Bayesian Optimization to upgrade the Classification Performance of Motor Imagery signals for BCI.
    Thenmozhi T; Helen R
    J Neurosci Methods; 2022 Jan; 366():109425. PubMed ID: 34838951
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Classification of Motor Imagery EEG signals using high resolution time-frequency representations and convolutional neural network.
    Srimadumathi V; Ramasubba Reddy M
    Biomed Phys Eng Express; 2024 Apr; 10(3):. PubMed ID: 38513274
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Index finger motor imagery EEG pattern recognition in BCI applications using dictionary cleaned sparse representation-based classification for healthy people.
    Miao M; Zeng H; Wang A; Zhao F; Liu F
    Rev Sci Instrum; 2017 Sep; 88(9):094305. PubMed ID: 28964180
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transferring a deep learning model from healthy subjects to stroke patients in a motor imagery brain-computer interface.
    Nagarajan A; Robinson N; Ang KK; Chua KSG; Chew E; Guan C
    J Neural Eng; 2024 Jan; 21(1):. PubMed ID: 38091617
    [No Abstract]   [Full Text] [Related]  

  • 50. A Comprehensive Review on Critical Issues and Possible Solutions of Motor Imagery Based Electroencephalography Brain-Computer Interface.
    Singh A; Hussain AA; Lal S; Guesgen HW
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33804611
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative analysis of spectral and temporal combinations in CSP-based methods for decoding hand motor imagery tasks.
    Blanco-Diaz CF; Antelis JM; Ruiz-Olaya AF
    J Neurosci Methods; 2022 Apr; 371():109495. PubMed ID: 35150764
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient resting-state EEG network facilitates motor imagery performance.
    Zhang R; Yao D; Valdés-Sosa PA; Li F; Li P; Zhang T; Ma T; Li Y; Xu P
    J Neural Eng; 2015 Dec; 12(6):066024. PubMed ID: 26529439
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Motor Imagery Hand Movement Direction Decoding Using Brain Computer Interface to Aid Stroke Recovery and Rehabilitation.
    Benzy VK; Vinod AP; Subasree R; Alladi S; Raghavendra K
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3051-3062. PubMed ID: 33211662
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An end-to-end CNN with attentional mechanism applied to raw EEG in a BCI classification task.
    Lashgari E; Ott J; Connelly A; Baldi P; Maoz U
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352734
    [No Abstract]   [Full Text] [Related]  

  • 55. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Nov; 255():85-91. PubMed ID: 26277421
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Flexible coding scheme for robotic arm control driven by motor imagery decoding.
    Ai Q; Zhao M; Chen K; Zhao X; Ma L; Liu Q
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35896097
    [No Abstract]   [Full Text] [Related]  

  • 57. Direction decoding of imagined hand movements using subject-specific features from parietal EEG.
    Sagila GK; Vinod AP
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35901779
    [No Abstract]   [Full Text] [Related]  

  • 58. An overview of methods of left and right foot motor imagery based on Tikhonov regularisation common spatial pattern.
    Zhang J; Wang X; Xu B; Wu Y; Lou X; Shen X
    Med Biol Eng Comput; 2023 May; 61(5):1047-1056. PubMed ID: 36650410
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hybrid mental tasks based human computer interface via integration of pronunciation and motor imagery.
    Tong J; Wei X; Dong E; Sun Z; Du S; Duan F
    J Neural Eng; 2022 Nov; 19(5):. PubMed ID: 36228578
    [No Abstract]   [Full Text] [Related]  

  • 60. Correlation-based channel selection and regularized feature optimization for MI-based BCI.
    Jin J; Miao Y; Daly I; Zuo C; Hu D; Cichocki A
    Neural Netw; 2019 Oct; 118():262-270. PubMed ID: 31326660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.