BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 35008414)

  • 21. Metformin induces CD11b+-cell-mediated growth inhibition of an osteosarcoma: implications for metabolic reprogramming of myeloid cells and anti-tumor effects.
    Uehara T; Eikawa S; Nishida M; Kunisada Y; Yoshida A; Fujiwara T; Kunisada T; Ozaki T; Udono H
    Int Immunol; 2019 Mar; 31(4):187-198. PubMed ID: 30508092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic reprograming of tumor-associated macrophages.
    Puthenveetil A; Dubey S
    Ann Transl Med; 2020 Aug; 8(16):1030. PubMed ID: 32953830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tumor-Associated Macrophages and Myeloid-Derived Suppressor Cells as Immunosuppressive Mechanism in Ovarian Cancer Patients: Progress and Challenges.
    Okła K; Wertel I; Polak G; Surówka J; Wawruszak A; Kotarski J
    Int Rev Immunol; 2016 Sep; 35(5):372-385. PubMed ID: 27644763
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immunometabolic attributes and mitochondria-associated signaling of Tumor-Associated Macrophages in tumor microenvironment modulate cancer progression.
    Dubey S; Ghosh S; Goswami D; Ghatak D; De R
    Biochem Pharmacol; 2023 Feb; 208():115369. PubMed ID: 36481347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pancreatic Tumor Microenvironment.
    Wang K; He H
    Adv Exp Med Biol; 2020; 1296():243-257. PubMed ID: 34185297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lipid Metabolic Regulatory Crosstalk Between Cancer Cells and Tumor-Associated Macrophages.
    Liu S; Shen YY; Yin LY; Liu J; Zu X
    DNA Cell Biol; 2023 Aug; 42(8):445-455. PubMed ID: 37535386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tasquinimod triggers an early change in the polarization of tumor associated macrophages in the tumor microenvironment.
    Olsson A; Nakhlé J; Sundstedt A; Plas P; Bauchet AL; Pierron V; Bruetschy L; Deronic A; Törngren M; Liberg D; Schmidlin F; Leanderson T
    J Immunother Cancer; 2015; 3():53. PubMed ID: 26673090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Significance of Immunosuppressive Cells as a Target for Immunotherapies in Melanoma and Non-Melanoma Skin Cancers.
    Fujimura T; Aiba S
    Biomolecules; 2020 Jul; 10(8):. PubMed ID: 32707850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Treg Cells Promote the SREBP1-Dependent Metabolic Fitness of Tumor-Promoting Macrophages via Repression of CD8
    Liu C; Chikina M; Deshpande R; Menk AV; Wang T; Tabib T; Brunazzi EA; Vignali KM; Sun M; Stolz DB; Lafyatis RA; Chen W; Delgoffe GM; Workman CJ; Wendell SG; Vignali DAA
    Immunity; 2019 Aug; 51(2):381-397.e6. PubMed ID: 31350177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tumor Microenvironment and Nitric Oxide: Concepts and Mechanisms.
    Vedenko A; Panara K; Goldstein G; Ramasamy R; Arora H
    Adv Exp Med Biol; 2020; 1277():143-158. PubMed ID: 33119871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer.
    Chaib M; Chauhan SC; Makowski L
    Front Cell Dev Biol; 2020; 8():351. PubMed ID: 32509781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Role of Tumor Associated Macrophages (TAMs) in Cancer Progression, Chemoresistance, Angiogenesis and Metastasis - Current Status.
    Dallavalasa S; Beeraka NM; Basavaraju CG; Tulimilli SV; Sadhu SP; Rajesh K; Aliev G; Madhunapantula SV
    Curr Med Chem; 2021; 28(39):8203-8236. PubMed ID: 34303328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New Insights into the Multifaceted Role of Myeloid-Derived Suppressor Cells (MDSCs) in High-Grade Gliomas: From Metabolic Reprograming, Immunosuppression, and Therapeutic Resistance to Current Strategies for Targeting MDSCs.
    Lakshmanachetty S; Cruz-Cruz J; Hoffmeyer E; Cole AP; Mitra SS
    Cells; 2021 Apr; 10(4):. PubMed ID: 33919732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy.
    Adeshakin AO; Liu W; Adeshakin FO; Afolabi LO; Zhang M; Zhang G; Wang L; Li Z; Lin L; Cao Q; Yan D; Wan X
    Cell Immunol; 2021 Apr; 362():104286. PubMed ID: 33524739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Myeloid-Derived Suppressor Cells in Immune Microenvironment Promote Progression of Esophagogastric Junction Adenocarcinoma.
    Wang Y; Sun H; Zhu N; Wu X; Sui Z; Gong L; Yu Z
    Front Oncol; 2021; 11():640080. PubMed ID: 33854974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion.
    De Cicco P; Ercolano G; Ianaro A
    Front Immunol; 2020; 11():1680. PubMed ID: 32849585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic Switch in the Tumor Microenvironment Determines Immune Responses to Anti-cancer Therapy.
    Wegiel B; Vuerich M; Daneshmandi S; Seth P
    Front Oncol; 2018; 8():284. PubMed ID: 30151352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeting tumor-associated macrophages in the tumor microenvironment.
    Zhou K; Cheng T; Zhan J; Peng X; Zhang Y; Wen J; Chen X; Ying M
    Oncol Lett; 2020 Nov; 20(5):234. PubMed ID: 32968456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship.
    Netea-Maier RT; Smit JWA; Netea MG
    Cancer Lett; 2018 Jan; 413():102-109. PubMed ID: 29111350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tumor-promoting myeloid cells in the pathogenesis of human oncoviruses: potential targets for immunotherapy.
    Aghamajidi A; Farhangnia P; Pashangzadeh S; Damavandi AR; Jafari R
    Cancer Cell Int; 2022 Oct; 22(1):327. PubMed ID: 36303138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.