BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 35008466)

  • 1. On the Effect of pH, Temperature, and Surfactant Structure on Bovine Serum Albumin-Cationic/Anionic/Nonionic Surfactants Interactions in Cacodylate Buffer-Fluorescence Quenching Studies Supported by UV Spectrophotometry and CD Spectroscopy.
    Żamojć K; Wyrzykowski D; Chmurzyński L
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling.
    Gelamo EL; Silva CH; Imasato H; Tabak M
    Biochim Biophys Acta; 2002 Jan; 1594(1):84-99. PubMed ID: 11825611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants.
    Gelamo EL; Tabak M
    Spectrochim Acta A Mol Biomol Spectrosc; 2000 Oct; 56A(11):2255-71. PubMed ID: 11058071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of bovine serum albumin with cationic imidazolium and quaternary ammonium gemini surfactants: effects of surfactant architecture.
    Zhou T; Ao M; Xu G; Liu T; Zhang J
    J Colloid Interface Sci; 2013 Jan; 389(1):175-81. PubMed ID: 23044272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of cationic, anionic, and nonionic surfactants on alkaline-induced intermediate of bovine serum albumin.
    Qu P; Lu H; Yan S; Lu Z
    Int J Biol Macromol; 2010 Jan; 46(1):91-9. PubMed ID: 19874844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of bovine serum albumin with N-acyl amino acid based anionic surfactants: Effect of head-group hydrophobicity.
    Ghosh S; Dey J
    J Colloid Interface Sci; 2015 Nov; 458():284-92. PubMed ID: 26245717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EPR and circular dichroism solution studies on the interactions of bovine serum albumin with ionic surfactants and β-cyclodextrin.
    Rogozea A; Matei I; Turcu IM; Ionita G; Sahini VE; Salifoglou A
    J Phys Chem B; 2012 Dec; 116(49):14245-53. PubMed ID: 23163315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative refolding of guanidinium hydrochloride denatured bovine serum albumin assisted by cationic and anionic surfactants via artificial chaperone protocol: Biophysical insight.
    Ishtikhar M; Siddiqui Z; Husain FM; Khan RA; Hassan I
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117510. PubMed ID: 31520999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: fluorescence and circular dichroism studies.
    Gharagozlou M; Boghaei DM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1617-22. PubMed ID: 18701343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Silico Characterization of the Binding Modes of Surfactants with Bovine Serum Albumin.
    Nnyigide OS; Lee SG; Hyun K
    Sci Rep; 2019 Jul; 9(1):10643. PubMed ID: 31337814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence probing of albumin-surfactant interaction.
    De S; Girigoswami A; Das S
    J Colloid Interface Sci; 2005 May; 285(2):562-73. PubMed ID: 15837473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Observation of Intermediate State(s) in the Mechanistic Investigation of Domain Specific Protein-Surfactant Interaction.
    Yadav R; Sengupta B; Das S; Sen P
    Protein Pept Lett; 2018; 25(4):339-349. PubMed ID: 29436987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined binding mechanism of nonionic ethoxylated surfactants to bovine serum albumin revealed by fluorescence and circular dichroism.
    Iovescu A; Băran A; Stîngă G; Cantemir-Leontieş AR; Maxim ME; Anghel DF
    J Photochem Photobiol B; 2015 Dec; 153():198-205. PubMed ID: 26422749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning of protein-surfactant interaction to modify the resultant structure.
    Mehan S; Aswal VK; Kohlbrecher J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032713. PubMed ID: 26465504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dilution of protein-surfactant complexes: a fluorescence study.
    Azadi G; Chauhan A; Tripathi A
    Protein Sci; 2013 Sep; 22(9):1258-65. PubMed ID: 23868358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential modulation in binding of ketoprofen to bovine serum albumin in the presence and absence of surfactants: spectroscopic and calorimetric insights.
    Misra PP; Kishore N
    Chem Biol Drug Des; 2013 Jul; 82(1):81-98. PubMed ID: 23517326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence spectroscopic studies on the interaction of Gemini surfactant 14-6-14 with bovine serum albumin.
    Hu M; Wang X; Wang H; Chai Y; He Y; Song G
    Luminescence; 2012; 27(3):204-10. PubMed ID: 21755587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complexation of beta-lactam antibiotic drug carbenicillin to bovine serum albumin: energetics and conformational studies.
    Thoppil AA; Sharma R; Kishore N
    Biopolymers; 2008 Oct; 89(10):831-40. PubMed ID: 18488985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Structure, Charge, and Concentration on the Pectin-Calcium-Surfactant Complexes.
    Joshi N; Rawat K; Bohidar HB
    J Phys Chem B; 2016 May; 120(18):4249-57. PubMed ID: 27097305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical study of biomolecular interactions between lysosomotropic surfactants and bovine serum albumin.
    Janek T; Czyżnikowska Ż; Łuczyński J; Gudiña EJ; Rodrigues LR; Gałęzowska J
    Colloids Surf B Biointerfaces; 2017 Nov; 159():750-758. PubMed ID: 28886512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.