These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 35008539)

  • 21. ZEB1 enhances Warburg effect to facilitate tumorigenesis and metastasis of HCC by transcriptionally activating PFKM.
    Zhou Y; Lin F; Wan T; Chen A; Wang H; Jiang B; Zhao W; Liao S; Wang S; Li G; Xu Z; Wang J; Zhang J; Ma H; Lin D; Li Q
    Theranostics; 2021; 11(12):5926-5938. PubMed ID: 33897890
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autophagy as a self-digestion signal in human cancers: Regulation by microRNAs in affecting carcinogenesis and therapy response.
    Kadhim MM; Ramírez-Coronel AA; Jalil AT; Talib HA; Gupta J; Jawhar ZH; Saleh MM; Pandey V; Zhang X; Khan H
    Pharmacol Res; 2023 Mar; 189():106695. PubMed ID: 36780958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MicroRNA Let-7c-5p-Mediated Regulation of ERCC6 Disrupts Autophagic Flux in Age-Related Cataract via the Binding to VCP.
    Cao Y; Li P; Zhang G; Kang L; Zhou T; Wu J; Wang Y; Wang Y; Chen X; Guan H
    Curr Eye Res; 2021 Sep; 46(9):1353-1362. PubMed ID: 33703976
    [No Abstract]   [Full Text] [Related]  

  • 25. Non-metabolic functions of glycolytic enzymes in tumorigenesis.
    Yu X; Li S
    Oncogene; 2017 May; 36(19):2629-2636. PubMed ID: 27797379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. miR-16-5p regulates aerobic glycolysis and tumorigenesis of NSCLC cells via LDH-A/lactate/NF-κB signaling.
    Arora S; Singh P; Tabassum G; Dohare R; Syed MA
    Life Sci; 2022 Sep; 304():120722. PubMed ID: 35714705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bromide impairs the circadian clock and glycolytic homeostasis via disruption of autophagy in rat H9C2 cardiomyocytes.
    Jiang Y; Gu Y; Xu H; Tian X; Zhang X; Xu X; Yan W; Zhang X
    BMC Mol Cell Biol; 2020 Jun; 21(1):44. PubMed ID: 32560625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MicroRNA-mediated autophagic signaling networks and cancer chemoresistance.
    Pan B; Yi J; Song H
    Cancer Biother Radiopharm; 2013 Oct; 28(8):573-8. PubMed ID: 23841710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting ornithine decarboxylase reverses the LIN28/Let-7 axis and inhibits glycolytic metabolism in neuroblastoma.
    Lozier AM; Rich ME; Grawe AP; Peck AS; Zhao P; Chang AT; Bond JP; Sholler GS
    Oncotarget; 2015 Jan; 6(1):196-206. PubMed ID: 25415050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A minor review of microRNA-338 exploring the insights of its function in tumorigenesis.
    Yi Q; Cui H; Liao Y; Xiong J; Ye X; Sun W
    Biomed Pharmacother; 2021 Jul; 139():111720. PubMed ID: 34243620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silencing PFKP inhibits starvation-induced autophagy, glycolysis, and epithelial mesenchymal transition in oral squamous cell carcinoma.
    Chen G; Liu H; Zhang Y; Liang J; Zhu Y; Zhang M; Yu D; Wang C; Hou J
    Exp Cell Res; 2018 Sep; 370(1):46-57. PubMed ID: 29894707
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Histone methyltransferase SETD1A interacts with HIF1α to enhance glycolysis and promote cancer progression in gastric cancer.
    Wu J; Chai H; Xu X; Yu J; Gu Y
    Mol Oncol; 2020 Jun; 14(6):1397-1409. PubMed ID: 32291851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epigenetic modifications as regulatory elements of autophagy in cancer.
    Sui X; Zhu J; Zhou J; Wang X; Li D; Han W; Fang Y; Pan H
    Cancer Lett; 2015 May; 360(2):106-13. PubMed ID: 25687886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-coding RNAs as new autophagy regulators in cancer progression.
    Lin Q; Shi Y; Liu Z; Mehrpour M; Hamaï A; Gong C
    Biochim Biophys Acta Mol Basis Dis; 2022 Jan; 1868(1):166293. PubMed ID: 34688868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The pivotal role of MicroRNAs in glucose metabolism in cancer.
    Taefehshokr S; Taefehshokr N; Hemmat N; Hajazimian S; Isazadeh A; Dadebighlu P; Baradaran B
    Pathol Res Pract; 2021 Jan; 217():153314. PubMed ID: 33341548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tumor Cell Glycolysis-At the Crossroad of Epithelial-Mesenchymal Transition and Autophagy.
    Marcucci F; Rumio C
    Cells; 2022 Mar; 11(6):. PubMed ID: 35326492
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of multifaceted regulators in cancer glucose metabolism and their clinical significance.
    Zhao L; Mao Y; Zhao Y; Cao Y; Chen X
    Oncotarget; 2016 May; 7(21):31572-85. PubMed ID: 26934324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The insights of Let-7 miRNAs in oncogenesis and stem cell potency.
    Sun X; Liu J; Xu C; Tang SC; Ren H
    J Cell Mol Med; 2016 Sep; 20(9):1779-88. PubMed ID: 27097729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ETS-1: A potential target of glycolysis for metabolic therapy by regulating glucose metabolism in pancreatic cancer.
    Zhang X; Wu D; Aldarouish M; Yin X; Li C; Wang C
    Int J Oncol; 2017 Jan; 50(1):232-240. PubMed ID: 27878249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compartment-specific activation of PPARγ governs breast cancer tumor growth, via metabolic reprogramming and symbiosis.
    Avena P; Anselmo W; Whitaker-Menezes D; Wang C; Pestell RG; Lamb RS; Hulit J; Casaburi I; Andò S; Martinez-Outschoorn UE; Lisanti MP; Sotgia F
    Cell Cycle; 2013 May; 12(9):1360-70. PubMed ID: 23574724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.