These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 35008686)

  • 1. Multiscale-Engineered Muscle Constructs: PEG Hydrogel Micro-Patterning on an Electrospun PCL Mat Functionalized with Gold Nanoparticles.
    Beldjilali-Labro M; Jellali R; Brown AD; Garcia Garcia A; Lerebours A; Guenin E; Bedoui F; Dufresne M; Stewart C; Grosset JF; Legallais C
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells.
    Brunelle AR; Horner CB; Low K; Ico G; Nam J
    Acta Biomater; 2018 Jan; 66():166-176. PubMed ID: 29128540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ether-Oxygen Containing Electrospun Microfibrous and Sub-Microfibrous Scaffolds Based on Poly(butylene 1,4-cyclohexanedicarboxylate) for Skeletal Muscle Tissue Engineering.
    Bloise N; Berardi E; Gualandi C; Zaghi E; Gigli M; Duelen R; Ceccarelli G; Cortesi EE; Costamagna D; Bruni G; Lotti N; Focarete ML; Visai L; Sampaolesi M
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30336625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofunctional hydrogels for skeletal muscle constructs.
    Salimath AS; García AJ
    J Tissue Eng Regen Med; 2016 Nov; 10(11):967-976. PubMed ID: 24616405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering.
    Chen MC; Sun YC; Chen YH
    Acta Biomater; 2013 Mar; 9(3):5562-72. PubMed ID: 23099301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration.
    Ge J; Liu K; Niu W; Chen M; Wang M; Xue Y; Gao C; Ma PX; Lei B
    Biomaterials; 2018 Aug; 175():19-29. PubMed ID: 29793089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofiber Yarn/Hydrogel Core-Shell Scaffolds Mimicking Native Skeletal Muscle Tissue for Guiding 3D Myoblast Alignment, Elongation, and Differentiation.
    Wang L; Wu Y; Guo B; Ma PX
    ACS Nano; 2015 Sep; 9(9):9167-79. PubMed ID: 26280983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration.
    Yeo M; Lee H; Kim GH
    Biofabrication; 2016 Sep; 8(3):035021. PubMed ID: 27634918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation.
    Jana S; Leung M; Chang J; Zhang M
    Biofabrication; 2014 Sep; 6(3):035012. PubMed ID: 24876344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain.
    Heher P; Maleiner B; Prüller J; Teuschl AH; Kollmitzer J; Monforte X; Wolbank S; Redl H; Rünzler D; Fuchs C
    Acta Biomater; 2015 Sep; 24():251-65. PubMed ID: 26141153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning.
    Li D; Chen W; Sun B; Li H; Wu T; Ke Q; Huang C; Ei-Hamshary H; Al-Deyab SS; Mo X
    Colloids Surf B Biointerfaces; 2016 Oct; 146():632-41. PubMed ID: 27429297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myoblast maturity on aligned microfiber bundles at the onset of strain application impacts myogenic outcomes.
    Somers SM; Zhang NY; Morrissette-McAlmon JBF; Tran K; Mao HQ; Grayson WL
    Acta Biomater; 2019 Aug; 94():232-242. PubMed ID: 31212110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards osteogenic differentiation of human dental pulp stem cells on PCL-PEG-PCL/zeolite nanofibrous scaffolds.
    Alipour M; Aghazadeh M; Akbarzadeh A; Vafajoo Z; Aghazadeh Z; Raeisdasteh Hokmabad V
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):3431-3437. PubMed ID: 31411067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically conductive nanofibrous scaffold composed of poly(ethylene glycol)-modified polypyrrole and poly(ε-caprolactone) for tissue engineering applications.
    Massoumi B; Hatamzadeh M; Firouzi N; Jaymand M
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():300-310. PubMed ID: 30813032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering.
    Saghebasl S; Davaran S; Rahbarghazi R; Montaseri A; Salehi R; Ramazani A
    J Biomater Sci Polym Ed; 2018 Jul; 29(10):1185-1206. PubMed ID: 29490569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4D biofabrication of skeletal muscle microtissues.
    Apsite I; Uribe JM; Posada AF; Rosenfeldt S; Salehi S; Ionov L
    Biofabrication; 2019 Dec; 12(1):015016. PubMed ID: 31600742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coaxial electrospun poly(ε-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering.
    McKeon-Fischer KD; Flagg DH; Freeman JW
    J Biomed Mater Res A; 2011 Dec; 99(3):493-9. PubMed ID: 21913315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zero-valent iron nanoparticles containing nanofiber scaffolds for nerve tissue engineering.
    Aydemir Sezer U; Ozturk Yavuz K; Ors G; Bay S; Aru B; Sogut O; Akgul Caglar T; Bozkurt MR; Cagavi E; Yanikkaya Demirel G; Sezer S; Karaca H
    J Tissue Eng Regen Med; 2020 Dec; 14(12):1815-1826. PubMed ID: 33010108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds.
    Cai A; Hardt M; Schneider P; Schmid R; Lange C; Dippold D; Schubert DW; Boos AM; Weigand A; Arkudas A; Horch RE; Beier JP
    BMC Biotechnol; 2018 Nov; 18(1):75. PubMed ID: 30477471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.