BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 35009056)

  • 1. Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation.
    Kiryushkin AS; Ilina EL; Guseva ED; Pawlowski K; Demchenko KN
    Plants (Basel); 2021 Dec; 11(1):. PubMed ID: 35009056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribozyme-mediated CRISPR/Cas9 gene editing in pyrethrum (Tanacetum cinerariifolium) hairy roots using a RNA polymerase II-dependent promoter.
    Li JW; Zeng T; Xu ZZ; Li JJ; Hu H; Yu Q; Zhou L; Zheng RR; Luo J; Wang CY
    Plant Methods; 2022 Mar; 18(1):32. PubMed ID: 35292048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of Hairy Root and Whole-Plant Transformation Protocols to Achieve Efficient CRISPR/Cas9 Genome Editing in Soybean.
    Kong Q; Li J; Wang S; Feng X; Shou H
    Plants (Basel); 2023 Feb; 12(5):. PubMed ID: 36903878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9 in Planta Hairy Root Transformation: A Powerful Platform for Functional Analysis of Root Traits in Soybean.
    Niazian M; Belzile F; Torkamaneh D
    Plants (Basel); 2022 Apr; 11(8):. PubMed ID: 35448772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene functional and gene editing analysis in soybean.
    Cheng Y; Wang X; Cao L; Ji J; Liu T; Duan K
    Plant Methods; 2021 Jul; 17(1):73. PubMed ID: 34246291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient
    Wang M; Qin YY; Wei NN; Xue HY; Dai WS
    Front Plant Sci; 2023; 14():1293374. PubMed ID: 38023879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-generation genome editing in potato using hairy root transformation.
    Butler NM; Jansky SH; Jiang J
    Plant Biotechnol J; 2020 Nov; 18(11):2201-2209. PubMed ID: 32170801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient
    Zhou L; Wang Y; Wang P; Wang C; Wang J; Wang X; Cheng H
    Front Plant Sci; 2022; 13():1059404. PubMed ID: 36643290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding.
    Antony Ceasar S; Ignacimuthu S
    Plant Physiol Biochem; 2023 Mar; 196():724-730. PubMed ID: 36812799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Efficient Hairy Root System for Validation of Plant Transformation Vector and CRISPR/Cas Construct Activities in Cucumber (
    Nguyen DV; Hoang TT; Le NT; Tran HT; Nguyen CX; Moon YH; Chu HH; Do PT
    Front Plant Sci; 2021; 12():770062. PubMed ID: 35222448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient CRISPR-mediated base editing in
    Rodrigues SD; Karimi M; Impens L; Van Lerberge E; Coussens G; Aesaert S; Rombaut D; Holtappels D; Ibrahim HMM; Van Montagu M; Wagemans J; Jacobs TB; De Coninck B; Pauwels L
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33443212
    [No Abstract]   [Full Text] [Related]  

  • 12. Agrobacterium-mediated delivery of CRISPR/Cas reagents for genome editing in plants enters an era of ternary vector systems.
    Zhang Y; Zhang Q; Chen QJ
    Sci China Life Sci; 2020 Oct; 63(10):1491-1498. PubMed ID: 32279281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Efficient
    Huang P; Lu M; Li X; Sun H; Cheng Z; Miao Y; Fu Y; Zhang X
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FLASH Genome Editing Pipeline: An Efficient and High-Throughput Method to Construct Arrayed CRISPR Library for Plant Functional Genomics.
    Yao L; Wang X; Ke R; Chen K; Xie K
    Curr Protoc; 2023 Sep; 3(9):e905. PubMed ID: 37755326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation.
    Fan YL; Zhang XH; Zhong LJ; Wang XY; Jin LS; Lyu SH
    BMC Plant Biol; 2020 May; 20(1):208. PubMed ID: 32397958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compendium of Plant-Specific CRISPR Vectors and Their Technical Advantages.
    Alok A; Chauhan H; Upadhyay SK; Pandey A; Kumar J; Singh K
    Life (Basel); 2021 Sep; 11(10):. PubMed ID: 34685392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine-tuning CRISPR/Cas9 gene editing in common bean (
    de Koning R; Daryanavard H; Garmyn J; Kiekens R; Toili MEM; Angenon G
    Front Plant Sci; 2023; 14():1233418. PubMed ID: 37929181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient Agrobacterium rhizogenes-mediated transformation for functional analysis in woodland strawberry.
    Yan H; Ma D; Yi P; Sun G; Chen X; Yi Y; Huang X
    Plant Methods; 2023 Sep; 19(1):99. PubMed ID: 37742022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of the rhizobial type III effector gene nopP to improve Agrobacterium rhizogenes-mediated transformation of Lotus japonicus.
    Wang Y; Yang F; Zhu PF; Khan A; Xie ZP; Staehelin C
    Plant Methods; 2021 Jun; 17(1):66. PubMed ID: 34162409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots.
    Cai Y; Chen L; Liu X; Sun S; Wu C; Jiang B; Han T; Hou W
    PLoS One; 2015; 10(8):e0136064. PubMed ID: 26284791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.