These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35009170)

  • 21. Rheological and Thermal Conductivity Study of Two-Dimensional Molybdenum Disulfide-Based Ethylene Glycol Nanofluids for Heat Transfer Applications.
    Shah SNA; Shahabuddin S; Khalid M; Mohd Sabri MF; Mohd Salleh MF; Muhamad Sarih N; Rahman S
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal and Rheological Characterization of Aqueous Nanofluids Based on Reduced Graphene Oxide (rGO) with Manganese Dioxide Nanocomposites (MnO
    Lozano-Steinmetz F; Ramírez-Navarro MP; Vivas L; Vasco DA; Singh DP; Zambra-Sazo C
    Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dataset for measured viscosity of Polyalpha-Olefin- boron nitride nanofluids.
    Sleiti AK
    Data Brief; 2021 Apr; 35():106881. PubMed ID: 33665269
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid Nanofluid Thermal Conductivity and Optimization: Original Approach and Background.
    Wohld J; Beck J; Inman K; Palmer M; Cummings M; Fulmer R; Vafaei S
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid).
    Kulkarni DP; Das DK; Chukwu GA
    J Nanosci Nanotechnol; 2006 Apr; 6(4):1150-4. PubMed ID: 16736780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of Six Carbon-Based Nanomaterials on the Rheological Properties of Nanofluids.
    Vallejo JP; Żyła G; Fernández-Seara J; Lugo L
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30682791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental Investigation of Rheological Properties and Thermal Conductivity of SiO
    Várady ZI; Ba TL; Parditka B; Erdélyi Z; Hernadi K; Karacs G; Gróf G; Szilágyi IM
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat Transfer Capability of (Ethylene Glycol + Water)-Based Nanofluids Containing Graphene Nanoplatelets: Design and Thermophysical Profile.
    Cabaleiro D; Colla L; Barison S; Lugo L; Fedele L; Bobbo S
    Nanoscale Res Lett; 2017 Dec; 12(1):53. PubMed ID: 28102524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of Nanoparticles on Thermophysical Properties of Hybrid Nanofluids of Different Volume Fractions.
    Abdullah MZ; Yu KH; Loh HY; Kamarudin R; Gunnasegaran P; Alkhwaji A
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interfacial interaction-driven rheological properties of quartz nanofluids from molecular dynamics simulations and density functional theory calculations.
    Lou Z; Cheng C; Cui Y; Tian H
    J Mol Model; 2022 Jun; 28(7):189. PubMed ID: 35708874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimizing the thermophysical behavior of a novel ternary hybrid nanofluid for energy applications through experimental research.
    Adun H; Abid M; Kavaz D; Hu Y; Zaini JH
    Heliyon; 2024 Jun; 10(12):e32728. PubMed ID: 39005909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural Convection of Ternary Hybrid Nanofluid in a Differential-Heated Enclosure with Non-Uniform Heating Wall.
    Rajesh V; Sheremet M
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport properties of alumina nanofluids.
    Wong KF; Kurma T
    Nanotechnology; 2008 Aug; 19(34):345702. PubMed ID: 21730657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal viscosity modelling of 10W40 oil-based MWCNT (40%)-TiO
    Hemmat Esfe M; Motallebi SM; Toghraie D
    Heliyon; 2022 Dec; 8(12):e11944. PubMed ID: 36478835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study on preparation, stability, thermal conductivity, and viscosity of silver nanoparticles-decorated three-dimensional graphene-like porous carbon hybrid nanofluids.
    Jin C; Wu Q; Zhang H; Yang G; Yuan X; Fu H
    Nanotechnology; 2021 Mar; 32(24):. PubMed ID: 33691293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Novel Experimental Study on the Rheological Properties and Thermal Conductivity of Halloysite Nanofluids.
    Le Ba T; Alkurdi AQ; Lukács IE; Molnár J; Wongwises S; Gróf G; Szilágyi IM
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32937934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal Conductivity and Viscosity: Review and Optimization of Effects of Nanoparticles.
    Apmann K; Fulmer R; Soto A; Vafaei S
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33800374
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis, thermophysical characterization and thermal performance analysis of novel Cu-MXene hybrid nanofluids for efficient coolant applications.
    Kumar KR; Shaik AH
    RSC Adv; 2023 Oct; 13(42):29536-29560. PubMed ID: 37818262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrical Conductivity of New Nanoparticle Enhanced Fluids: An Experimental Study.
    Chereches EI; Minea AA
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermally Dissipative Flow and Entropy Analysis for Electromagnetic Trihybrid Nanofluid Flow Past a Stretching Surface.
    Guedri K; Khan A; Gul T; Mukhtar S; Alghamdi W; Yassen MF; Tag Eldin E
    ACS Omega; 2022 Sep; 7(37):33432-33442. PubMed ID: 36157759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.