These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 35009316)
1. Gallium-Indium-Tin Eutectic as a Self-Healing Room-Temperature Liquid Metal Anode for High-Capacity Lithium-Ion Batteries. Kidanu WG; Hur J; Kim IT Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009316 [TBL] [Abstract][Full Text] [Related]
2. Alkali-Ion Batteries by Carbon Encapsulation of Liquid Metal Anode. Huang C; Guo B; Wang X; Cao Q; Zhang D; Huang J; Jiang JZ Adv Mater; 2024 Jan; 36(4):e2309732. PubMed ID: 37971044 [TBL] [Abstract][Full Text] [Related]
3. The Promising Potential of Gallium Based Liquid Metals for Energy Storage. Rehman WU; Manj RZA; Ma Y; Yang J Chempluschem; 2024 Aug; 89(8):e202300767. PubMed ID: 38696273 [TBL] [Abstract][Full Text] [Related]
4. Self-Assembled Framework Formed During Lithiation of SnS Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057 [TBL] [Abstract][Full Text] [Related]
5. Nano-Confined Tin Oxide in Carbon Nanotube Electrodes via Electrostatic Spray Deposition for Lithium-Ion Batteries. Henriques A; Rabiei Baboukani A; Jafarizadeh B; Chowdhury AH; Wang C Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556892 [TBL] [Abstract][Full Text] [Related]
6. High-Performance Ga Tang X; Huang X; Huang Y; Gou Y; Pastore J; Yang Y; Xiong Y; Qian J; Brock JD; Lu J; Xiao L; Abruña HD; Zhuang L ACS Appl Mater Interfaces; 2018 Feb; 10(6):5519-5526. PubMed ID: 29345900 [TBL] [Abstract][Full Text] [Related]
7. A Room-Temperature Self-Healing Liquid Metal-Infilled Microcapsule Driven by Coaxial Flow Focusing for High-Performance Lithium-Ion Battery Anode. Lin X; Chen A; Yang C; Mu K; Han T; Si T; Li J; Liu J Small; 2024 Apr; 20(16):e2307071. PubMed ID: 38032166 [TBL] [Abstract][Full Text] [Related]
8. Porous α-MoO3/MWCNT nanocomposite synthesized via a surfactant-assisted solvothermal route as a lithium-ion-battery high-capacity anode material with excellent rate capability and cyclability. Ma F; Yuan A; Xu J; Hu P ACS Appl Mater Interfaces; 2015 Jul; 7(28):15531-41. PubMed ID: 26132052 [TBL] [Abstract][Full Text] [Related]
9. Iron Oxide (α-Fe2O3) Nanoparticles as an Anode Material for Lithium Ion Battery. Hwang SW; Umar A; Kim SH J Nanosci Nanotechnol; 2015 Jul; 15(7):5129-34. PubMed ID: 26373090 [TBL] [Abstract][Full Text] [Related]
10. Perovskite-type CaMnO Chang L; Li J; Le Z; Nie P; Guo Y; Wang H; Xu T; Xue X J Colloid Interface Sci; 2021 Feb; 584():698-705. PubMed ID: 33213867 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of Free-Standing Tin Phosphide/Phosphate Carbon Composite Nanofibers as Anodes for Lithium-Ion Batteries with Improved Low-Temperature Performance. Belgibayeva A; Rakhatkyzy M; Rakhmetova A; Kalimuldina G; Nurpeissova A; Bakenov Z Small; 2023 Nov; 19(48):e2304062. PubMed ID: 37507824 [TBL] [Abstract][Full Text] [Related]
12. Room-Temperature All-Liquid-Metal Batteries Based on Fusible Alloys with Regulated Interfacial Chemistry and Wetting. Ding Y; Guo X; Qian Y; Xue L; Dolocan A; Yu G Adv Mater; 2020 Jul; 32(30):e2002577. PubMed ID: 32548922 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of One-Dimensional Mesoporous Ag Nanoparticles-Modified TiO Zhang Y; Li J; Li W; Kang D Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31426615 [TBL] [Abstract][Full Text] [Related]
14. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries. Zhao T; She S; Ji X; Guo X; Jin W; Zhu R; Dang A; Li H; Li T; Wei B Sci Rep; 2016 Sep; 6():33833. PubMed ID: 27671848 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of Co@CoO/C by micro-tube method and their electrochemical performances. Du J; Jin B; Liu L; Chen L; Fan X; Lei B; Liang L Heliyon; 2024 May; 10(10):e31362. PubMed ID: 38813198 [TBL] [Abstract][Full Text] [Related]
16. Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature. Deng C; Lau ML; Barkholtz HM; Xu H; Parrish R; Xu MO; Xu T; Liu Y; Wang H; Connell JG; Smith KA; Xiong H Nanoscale; 2017 Aug; 9(30):10757-10763. PubMed ID: 28715023 [TBL] [Abstract][Full Text] [Related]
17. Copper Nanoparticle-Incorporated Carbon Fibers as Free-Standing Anodes for Lithium-Ion Batteries. Han P; Yuan T; Yao L; Han Z; Yang J; Zheng S Nanoscale Res Lett; 2016 Dec; 11(1):172. PubMed ID: 27033848 [TBL] [Abstract][Full Text] [Related]
18. Room-Temperature Liquid Metal Confined in MXene Paper as a Flexible, Freestanding, and Binder-Free Anode for Next-Generation Lithium-Ion Batteries. Wei C; Fei H; Tian Y; An Y; Zeng G; Feng J; Qian Y Small; 2019 Nov; 15(46):e1903214. PubMed ID: 31583828 [TBL] [Abstract][Full Text] [Related]
19. Facile green synthesis of a Co Soundharrajan V; Sambandam B; Song J; Kim S; Jo J; Duong PT; Kim S; Mathew V; Kim J J Colloid Interface Sci; 2017 Sep; 501():133-141. PubMed ID: 28448833 [TBL] [Abstract][Full Text] [Related]
20. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]