These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35009387)

  • 1. Bandstructure and Size-Scaling Effects in the Performance of Monolayer Black Phosphorus Nanodevices.
    Poljak M; Matić M
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimum Contact Configurations for Quasi-One-Dimensional Phosphorene Nanodevices.
    Poljak M; Matić M
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower Limits of Contact Resistance in Phosphorene Nanodevices with Edge Contacts.
    Poljak M; Matić M; Župančić T; Zeljko A
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogenated cove-edge aluminum nitride nanoribbons for ultrascaled resonant tunneling diode applications: a computational DFT study.
    Kharwar S; Singh S; Kaushik BK
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36857765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance Limit of Monolayer WSe
    Sun X; Xu L; Zhang Y; Wang W; Liu S; Yang C; Zhang Z; Lu J
    ACS Appl Mater Interfaces; 2020 May; 12(18):20633-20644. PubMed ID: 32285659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of tunneling current in phosphorene tunnel field effect transistors by surface defects.
    Lu J; Fan ZQ; Gong J; Chen JZ; ManduLa H; Zhang YY; Yang SY; Jiang XW
    Phys Chem Chem Phys; 2018 Feb; 20(8):5699-5707. PubMed ID: 29410993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-5 nm monolayer black phosphorene tunneling transistors.
    Li H; Shi B; Pan Y; Li J; Xu L; Xu L; Zhang Z; Pan F; Lu J
    Nanotechnology; 2018 Nov; 29(48):485202. PubMed ID: 30207546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of Monolayer Blue Phosphorene Double-Gate MOSFETs from the First Principles.
    Wang J; Cai Q; Lei J; Yang G; Xue J; Chen D; Liu B; Lu H; Zhang R; Zheng Y
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20956-20964. PubMed ID: 31046216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signature of excitonic insulators in phosphorene nanoribbons.
    Felipe Pereira de Oliveira A; Luisa da Rosa A; Cavalheiro Dias A
    J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38744299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-Narrow Phosphorene Nanoribbons Produced by Facile Electrochemical Process.
    Abu UO; Akter S; Nepal B; Pitton KA; Guiton BS; Strachan DR; Sumanasekera G; Wang H; Jasinski JB
    Adv Sci (Weinh); 2022 Nov; 9(31):e2203148. PubMed ID: 36068163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability and carrier transport properties of phosphorene-based polymorphic nanoribbons.
    Kaur S; Kumar A; Srivastava S; Pandey R; Tankeshwar K
    Nanotechnology; 2018 Apr; 29(15):155701. PubMed ID: 29388562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling Effect of Phosphorene Nanoribbon - Uncovering the Origin of Asymmetric Current Transport.
    Lv Y; Chang S; Huang Q; Wang H; He J
    Sci Rep; 2016 Nov; 6():38009. PubMed ID: 27897230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Many-Body Effect and Device Performance Limit of Monolayer InSe.
    Wang Y; Fei R; Quhe R; Li J; Zhang H; Zhang X; Shi B; Xiao L; Song Z; Yang J; Shi J; Pan F; Lu J
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23344-23352. PubMed ID: 29916240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Junctionless Mode in Improving the Photosensitivity of Sub-10 nm Carbon Nanotube/Nanoribbon Field-Effect Phototransistors: Quantum Simulation, Performance Assessment, and Comparison.
    Tamersit K; Madan J; Kouzou A; Pandey R; Kennel R; Abdelrahem M
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First principles investigation on armchair zinc oxide nanoribbons as uric acid sensors.
    Singh P; Randhawa DKK; Tarun ; Choudhary BC; Walia GK; Kaur N
    J Mol Model; 2019 Dec; 26(1):4. PubMed ID: 31834483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-5 nm Monolayer Arsenene and Antimonene Transistors.
    Sun X; Song Z; Liu S; Wang Y; Li Y; Wang W; Lu J
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22363-22371. PubMed ID: 29877077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation and Modeling of Novel Electronic Device Architectures with NESS (Nano-Electronic Simulation Software): A Modular Nano TCAD Simulation Framework.
    Medina-Bailon C; Dutta T; Rezaei A; Nagy D; Adamu-Lema F; Georgiev VP; Asenov A
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34200658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interfacial properties of 2D metal-monolayer blue phosphorene heterojunctions and transport properties of their field-effect transistors.
    Chen W; Lin X; Xu G; Zhong K; Zhang JM; Huang Z
    J Phys Condens Matter; 2023 Dec; 36(12):. PubMed ID: 38056009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bandgap scaling and negative differential resistance behavior of zigzag phosphorene antidot nanoribbons (ZPANRs).
    Carmel S; Pon A; Meenakshisundaram N; Ramesh R; Bhattacharyya A
    Phys Chem Chem Phys; 2018 May; 20(21):14855-14863. PubMed ID: 29781502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic properties of phosphorene nanoribbons with nanoholes.
    Sun L; Zhang ZH; Wang H; Li M
    RSC Adv; 2018 Feb; 8(14):7486-7493. PubMed ID: 35539136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.