BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 35009463)

  • 41. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths.
    Dong H; Cao W; Bian J; Zhang J
    Materials (Basel); 2014 Dec; 7(12):7843-7860. PubMed ID: 28788279
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An approach to study the inter-relationship between mechanical and durability properties of ternary blended cement concrete using linear regression analysis.
    Natarajan S; Gnanadurai SB
    Math Biosci Eng; 2019 Apr; 16(5):3734-3752. PubMed ID: 31499634
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Nature-Inspired Metaheuristic Method for Predicting the Creep Strain of Green Concrete Containing Ground Granulated Blast Furnace Slag.
    Sadowski Ł; Nikoo M; Shariq M; Joker E; Czarnecki S
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30658508
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Use of Artificial Intelligence for Predicting Parameters of Sustainable Concrete and Raw Ingredient Effects and Interactions.
    Amin MN; Ahmad W; Khan K; Ahmad A; Nazar S; Alabdullah AA
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955144
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Soft computing techniques to predict the compressive strength of green self-compacting concrete incorporating recycled plastic aggregates and industrial waste ashes.
    Faraj RH; Mohammed AA; Omer KM; Ahmed HU
    Clean Technol Environ Policy; 2022; 24(7):2253-2281. PubMed ID: 35531082
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP.
    Nafees A; Javed MF; Khan S; Nazir K; Farooq F; Aslam F; Musarat MA; Vatin NI
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947124
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of Artificial Intelligence Methods for Predicting the Strength of Recycled Aggregate Concrete and the Influence of Raw Ingredients.
    Pan X; Xiao Y; Suhail SA; Ahmad W; Murali G; Salmi A; Mohamed A
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744254
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network.
    Bu L; Du G; Hou Q
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300839
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF.
    Nafees A; Khan S; Javed MF; Alrowais R; Mohamed AM; Mohamed A; Vatin NI
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458331
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Forecasting the strength of preplaced aggregate concrete using interpretable machine learning approaches.
    Javed MF; Fawad M; Lodhi R; Najeh T; Gamil Y
    Sci Rep; 2024 Apr; 14(1):8381. PubMed ID: 38600161
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimal Design of the Cement, Fly Ash, and Slag Mixture in Ternary Blended Concrete Based on Gene Expression Programming and the Genetic Algorithm.
    Wang XY
    Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31370323
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In-Depth Analysis of Cement-Based Material Incorporating Metakaolin Using Individual and Ensemble Machine Learning Approaches.
    Bulbul AMR; Khan K; Nafees A; Amin MN; Ahmad W; Usman M; Nazar S; Arab AMA
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanical Behavior of Fine Recycled Concrete Aggregate Concrete with the Mineral Admixtures.
    Ju M; Jeong JG; Palou M; Park K
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32423034
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prediction on Compressive and Split Tensile Strengths of GGBFS/FA Based GPC.
    Lee S; Shin S
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31847257
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design.
    Ziolkowski P
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687648
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sulfate Resistance of Recycled Aggregate Concrete with GGBS and Fly Ash-Based Geopolymer.
    Xie J; Zhao J; Wang J; Wang C; Huang P; Fang C
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31014035
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Performance Comparison of Machine Learning Models for Concrete Compressive Strength Prediction.
    Sah AK; Hong YM
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730881
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Frost Resistance Number to Assess Freeze and Thaw Resistance of Non-Autoclaved Aerated Concretes Containing Ground Granulated Blast-Furnace Slag and Micro-Silica.
    Sharafutdinov E; Shon CS; Zhang D; Chung CW; Kim J; Bagitova S
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835717
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Life cycle assessment (LCA) of precast concrete blocks utilizing ground granulated blast furnace slag.
    Ali B; Ouni MHE; Kurda R
    Environ Sci Pollut Res Int; 2022 Nov; 29(55):83580-83595. PubMed ID: 35764735
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature.
    Ahmad A; Ostrowski KA; Maślak M; Farooq F; Mehmood I; Nafees A
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.