These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35009592)

  • 1. MEMS-Scanner Testbench for High Field of View LiDAR Applications.
    Baier V; Schardt M; Fink M; Jakobi M; Koch AW
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MEMS Mirrors for LiDAR: A review.
    Wang D; Watkins C; Xie H
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32349453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Evaluation of MEMS-Based Automotive LiDAR Sensor and Its Simulation Model as per ASTM E3125-17 Standard.
    Haider A; Cho Y; Pigniczki M; Köhler MH; Haas L; Kastner L; Fink M; Schardt M; Cichy Y; Koyama S; Zeh T; Poguntke T; Inoue H; Jakobi M; Koch AW
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-voltage wide-field-of-view lidar scanning system based on a MEMS mirror.
    Zhou J; Qian K
    Appl Opt; 2019 Feb; 58(5):A283-A290. PubMed ID: 30874006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-MEMS Lidar Using Hybrid Optical Architecture with Digital Micromirror Devices and a 2D-MEMS Mirror.
    Kang E; Choi H; Hellman B; Rodriguez J; Smith B; Deng X; Liu P; Lee TL; Evans E; Hong Y; Guan J; Luo C; Takashima Y
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A large-scale microelectromechanical-systems-based silicon photonics LiDAR.
    Zhang X; Kwon K; Henriksson J; Luo J; Wu MC
    Nature; 2022 Mar; 603(7900):253-258. PubMed ID: 35264759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the high angular resolution 360° LiDAR based on scanning MEMS mirror.
    Yang D; Liu Y; Chen Q; Chen M; Zhan S; Cheung NK; Chan HY; Wang Z; Li WJ
    Sci Rep; 2023 Jan; 13(1):1540. PubMed ID: 36707630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast Synchronization Method of Comb-Actuated MEMS Mirror Pair for LiDAR Application.
    Xu F; Qiao D; Xia C; Song X; He Y
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Scheme of MEMS-Based LiDAR by Synchronized Dual-Laser Beams for Detection Range Enhancement.
    Huang CW; Liu CN; Mao SC; Tsai WS; Pei Z; Tu CW; Cheng WH
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Impact of LiDAR Configuration on Goal-Based Navigation within a Deep Reinforcement Learning Framework.
    Olayemi KB; Van M; McLoone S; McIlvanna S; Sun Y; Close J; Nguyen NM
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfigurable Angular Resolution Design Method in a Separate-Axis Lissajous Scanning MEMS LiDAR System.
    Xu F; Qiao D; Xia C; Song X; Zheng W; He Y; Fan Q
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eye-safe diode laser Doppler lidar with a MEMS beam-scanner.
    Hu Q; Pedersen C; Rodrigo PJ
    Opt Express; 2016 Feb; 24(3):1934-42. PubMed ID: 26906770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Behavior of Biaxial Piezoelectric MEMS-Scanners.
    Mollard L; Dieppedale C; Hamelin A; Rhun GL; Hue J; Frey L; Castellan G
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometric Model and Calibration Method for a Solid-State LiDAR.
    García-Gómez P; Royo S; Rodrigo N; Casas JR
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32443805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffraction Efficiency of MEMS Phase Light Modulator, TI-PLM, for Quasi-Continuous and Multi-Point Beam Steering.
    Deng X; Tang CI; Luo C; Takashima Y
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of the quadrangular prism beam splitting receiving system in the MEMS-based scanning LIDAR.
    Lee X; Zhou W; Huang Z
    Appl Opt; 2023 Feb; 62(5):1285-1289. PubMed ID: 36821234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reshaping Field of View and Resolution with Segmented Reflectors: Bridging the Gap Between Rotating and Solid-State LiDARs.
    Aalerud A; Dybedal J; Subedi D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32549400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel detector design for reducing intercell x-ray cross-talk in the variable resolution x-ray CT scanner: a Monte Carlo study.
    Arabi H; Asl AR; Ay MR; Zaidi H
    Med Phys; 2011 Mar; 38(3):1389-96. PubMed ID: 21520850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an Electrostatic Comb-Driven MEMS Scanning Mirror for Two-Dimensional Raster Scanning.
    Wang Q; Wang W; Zhuang X; Zhou C; Fan B
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33915772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic technologies for autonomous cars: feature introduction.
    Shi JW; Guo JI; Kagami M; Suni P; Ziemann O
    Opt Express; 2019 Mar; 27(5):7627-7628. PubMed ID: 30876324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.