These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 35009661)
1. Development and Evaluation of BenchBalance: A System for Benchmarking Balance Capabilities of Wearable Robots and Their Users. Bayón C; Delgado-Oleas G; Avellar L; Bentivoglio F; Di Tommaso F; Tagliamonte NL; Rocon E; van Asseldonk EHF Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009661 [TBL] [Abstract][Full Text] [Related]
2. User-Centered Evaluation of the Wearable Walker Lower Limb Exoskeleton; Preliminary Assessment Based on the Experience Protocol. Camardella C; Lippi V; Porcini F; Bassani G; Lencioni L; Mauer C; Haverkamp C; Avizzano CA; Frisoli A; Filippeschi A Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205050 [TBL] [Abstract][Full Text] [Related]
3. Assessing the Involvement of Users During Development of Lower Limb Wearable Robotic Exoskeletons: A Survey Study. Ármannsdóttir AL; Beckerle P; Moreno JC; van Asseldonk EHF; Manrique-Sancho MT; Del-Ama AJ; Veneman JF; Briem K Hum Factors; 2020 May; 62(3):351-364. PubMed ID: 31928418 [TBL] [Abstract][Full Text] [Related]
4. An integrated evaluation approach of wearable lower limb exoskeletons for human performance augmentation. Zhang X; Chen X; Huo B; Liu C; Zhu X; Zu Y; Wang X; Chen X; Sun Q Sci Rep; 2023 Mar; 13(1):4251. PubMed ID: 36918651 [TBL] [Abstract][Full Text] [Related]
6. Effect of wearable chair on gait, balance, and discomfort of new users during level walking with anterior loads. Li YY; Gan J J Safety Res; 2023 Dec; 87():27-37. PubMed ID: 38081701 [TBL] [Abstract][Full Text] [Related]
7. A Systematic Review of Industrial Exoskeletons for Injury Prevention: Efficacy Evaluation Metrics, Target Tasks, and Supported Body Postures. Golabchi A; Chao A; Tavakoli M Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408328 [TBL] [Abstract][Full Text] [Related]
9. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538 [TBL] [Abstract][Full Text] [Related]
10. The Effect of Crutch Gait Pattern on Shoulder Reaction Force when Walking with Lower Limb Exoskeletons. Chen X; Cheng X; Fong J; Oetomo D; Tan Y Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7574-7577. PubMed ID: 34892843 [TBL] [Abstract][Full Text] [Related]
11. An industrial exoskeleton user acceptance framework based on a literature review of empirical studies. Elprama SA; Vanderborght B; Jacobs A Appl Ergon; 2022 Apr; 100():103615. PubMed ID: 34847372 [TBL] [Abstract][Full Text] [Related]
12. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. Rodríguez-Fernández A; Lobo-Prat J; Font-Llagunes JM J Neuroeng Rehabil; 2021 Feb; 18(1):22. PubMed ID: 33526065 [TBL] [Abstract][Full Text] [Related]
13. Occupational arm-support and back-support exoskeletons elicit changes in reactive balance after slip-like and trip-like perturbations on a treadmill. Dooley S; Kim S; Nussbaum MA; Madigan ML Appl Ergon; 2024 Feb; 115():104178. PubMed ID: 37984085 [TBL] [Abstract][Full Text] [Related]
14. Lower Limb Exoskeleton Gait Planning Based on Crutch and Human-Machine Foot Combined Center of Pressure. Yang W; Zhang J; Zhang S; Yang C Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339443 [TBL] [Abstract][Full Text] [Related]
15. Exploring New Potential Applications for Hand Exoskeletons: Power Grip to Assist Human Standing. Diez JA; Santamaria V; Khan MI; Catalán JM; Garcia-Aracil N; Agrawal SK Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374744 [TBL] [Abstract][Full Text] [Related]
16. A mechatronic leg replica to benchmark human-exoskeleton physical interactions. Dežman M; Massardi S; Pinto-Fernandez D; Grosu V; Rodriguez-Guerrero C; Babič J; Torricelli D Bioinspir Biomim; 2023 Apr; 18(3):. PubMed ID: 37068491 [TBL] [Abstract][Full Text] [Related]
17. Exploring the Utility of Crutch Force Sensors to Predict User Intent in Assistive Lower Limb Exoskeletons. Fong J; Bernacki K; Pham D; Shah R; Tan Y; Oetomo D IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176137 [TBL] [Abstract][Full Text] [Related]
18. Effect of wearable exoskeleton on post-stroke gait: A systematic review and meta-analysis. Hsu TH; Tsai CL; Chi JY; Hsu CY; Lin YN Ann Phys Rehabil Med; 2023 Feb; 66(1):101674. PubMed ID: 35525427 [TBL] [Abstract][Full Text] [Related]
19. Opportunities and challenges in the development of exoskeletons for locomotor assistance. Siviy C; Baker LM; Quinlivan BT; Porciuncula F; Swaminathan K; Awad LN; Walsh CJ Nat Biomed Eng; 2023 Apr; 7(4):456-472. PubMed ID: 36550303 [TBL] [Abstract][Full Text] [Related]
20. Questionnaire results of user experiences with wearable exoskeletons and their preferences for sensory feedback. Muijzer-Witteveen H; Sibum N; van Dijsseldonk R; Keijsers N; van Asseldonk E J Neuroeng Rehabil; 2018 Nov; 15(1):112. PubMed ID: 30470238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]