These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 35009674)

  • 1. Shack-Hartmann Wavefront Sensing of Ultrashort Optical Vortices.
    Pandey AK; Larrieu T; Dovillaire G; Kazamias S; Guilbaud O
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distorted wavefront detection of orbital angular momentum beams based on a Shack-Hartmann wavefront sensor.
    Lan B; Liu C; Tang A; Chen M; Rui D; Shen F; Xian H
    Opt Express; 2022 Aug; 30(17):30623-30629. PubMed ID: 36242162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent Manipulation of Topological Charges and Polarization Patterns of Optical Vortices.
    Yang CH; Chen YD; Wu ST; Fuh AY
    Sci Rep; 2016 Aug; 6():31546. PubMed ID: 27526858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aberration-resistible topological charge determination of annular-shaped optical vortex beams using Shack-Hartmann wavefront sensor.
    Wang D; Huang H; Matsui Y; Tanaka H; Toyoda H; Inoue T; Liu H
    Opt Express; 2019 Mar; 27(5):7803-7821. PubMed ID: 30876337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavefront reconstruction of an optical vortex by a Hartmann-Shack sensor.
    Starikov FA; Kochemasov GG; Kulikov SM; Manachinsky AN; Maslov NV; Ogorodnikov AV; Sukharev SA; Aksenov VP; Izmailov IV; Kanev FY; Atuchin VV; Soldatenkov IS
    Opt Lett; 2007 Aug; 32(16):2291-3. PubMed ID: 17700762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-mode-locked Laguerre-Gaussian beam with staged topological charge by thermal-optical field coupling.
    Zhang Y; Yu H; Zhang H; Xu X; Xu J; Wang J
    Opt Express; 2016 Mar; 24(5):5514-5522. PubMed ID: 29092374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor.
    Murphy K; Burke D; Devaney N; Dainty C
    Opt Express; 2010 Jul; 18(15):15448-60. PubMed ID: 20720924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-order optical vortex position detection using a Shack-Hartmann wavefront sensor.
    Luo J; Huang H; Matsui Y; Toyoda H; Inoue T; Bai J
    Opt Express; 2015 Apr; 23(7):8706-19. PubMed ID: 25968709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dipole influence on Shack-Hartmann vortex detection in scintillated beams.
    Chen M; Roux FS
    J Opt Soc Am A Opt Image Sci Vis; 2008 May; 25(5):1084-90. PubMed ID: 18451914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topological charge of asymmetric optical vortices.
    Kotlyar VV; Kovalev AA
    Opt Express; 2020 Jul; 28(14):20449-20460. PubMed ID: 32680104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberration-induced vortex splitting in amplified orbital angular momentum beams.
    Harrison J; Buono WT; Forbes A; Naidoo D
    Opt Express; 2023 May; 31(11):17593-17608. PubMed ID: 37381489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation of an optical vortex carried by a partially coherent Laguerre-Gaussian beam in turbulent ocean.
    Cheng M; Guo L; Li J; Huang Q; Cheng Q; Zhang D
    Appl Opt; 2016 Jun; 55(17):4642-8. PubMed ID: 27409021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional spatiotemporal pulse characterization with an acousto-optic pulse shaper and a Hartmann-Shack wavefront sensor.
    Cousin SL; Bueno JM; Forget N; Austin DR; Biegert J
    Opt Lett; 2012 Aug; 37(15):3291-3. PubMed ID: 22859162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of optical vortex detection methods for use with a Shack-Hartmann wavefront sensor.
    Murphy K; Dainty C
    Opt Express; 2012 Feb; 20(5):4988-5002. PubMed ID: 22418303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering.
    Wang S; Yang P; Xu B; Dong L; Ao M
    Opt Express; 2015 Feb; 23(4):5052-64. PubMed ID: 25836540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hartmann-Shack wavefront sensing without a lenslet array using a digital micromirror device.
    Vohnsen B; Carmichael Martins A; Qaysi S; Sharmin N
    Appl Opt; 2018 Aug; 57(22):E199-E204. PubMed ID: 30117885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of spatiotemporal optical vortices in ultrashort laser pulses using rotationally interleaved multispirals.
    Ma L; Chen C; Zhan Z; Dong Q; Cheng C; Liu C
    Opt Express; 2022 Dec; 30(26):47287-47303. PubMed ID: 36558660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metasurface-based perfect vortex beams with trigonometric-function topological charge for OAM manipulation.
    Zhang B; Hu ZD; Wu J; Wang J; Nie Y; Zhang F; Li M; Khakhomov S
    Opt Lett; 2023 May; 48(9):2409-2412. PubMed ID: 37126285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new wavefront sensor with polar symmetry: quantitative comparisons with a Shack-Hartmann wavefront sensor.
    Carvalho LA; Castro J; Chamon W; Schor P
    J Refract Surg; 2006 Nov; 22(9):954-8. PubMed ID: 17124896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a compact device to generate and test beams with orbital angular momentum in the EUV.
    Pabon DO; Ledesma SA; Quinteiro GF; Capeluto MG
    Appl Opt; 2017 Oct; 56(29):8048-8054. PubMed ID: 29047665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.