These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 35009689)
1. Wheat Yellow Rust Disease Infection Type Classification Using Texture Features. Shafi U; Mumtaz R; Haq IU; Hafeez M; Iqbal N; Shaukat A; Zaidi SMH; Mahmood Z Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009689 [TBL] [Abstract][Full Text] [Related]
2. The classification of wheat yellow rust disease based on a combination of textural and deep features. Hayıt T; Erbay H; Varçın F; Hayıt F; Akci N Multimed Tools Appl; 2023 May; ():1-19. PubMed ID: 37362723 [TBL] [Abstract][Full Text] [Related]
3. A Deep-Learning-Based Approach for Wheat Yellow Rust Disease Recognition from Unmanned Aerial Vehicle Images. Pan Q; Gao M; Wu P; Yan J; Li S Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640873 [TBL] [Abstract][Full Text] [Related]
4. Combining biophysical parameters with thermal and RGB indices using machine learning models for predicting yield in yellow rust affected wheat crop. Singh RN; Krishnan P; Singh VK; Sah S; Das B Sci Rep; 2023 Nov; 13(1):18814. PubMed ID: 37914800 [TBL] [Abstract][Full Text] [Related]
5. The NWRD Dataset: An Open-Source Annotated Segmentation Dataset of Diseased Wheat Crop. Anwar H; Khan SU; Ghaffar MM; Fayyaz M; Khan MJ; Weis C; Wehn N; Shafait F Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571726 [TBL] [Abstract][Full Text] [Related]
6. Identification of Wheat Yellow Rust Using Optimal Three-Band Spectral Indices in Different Growth Stages. Zheng Q; Huang W; Cui X; Dong Y; Shi Y; Ma H; Liu L Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30583469 [TBL] [Abstract][Full Text] [Related]
7. Super Resolution Generative Adversarial Network (SRGANs) for Wheat Stripe Rust Classification. Maqsood MH; Mumtaz R; Haq IU; Shafi U; Zaidi SMH; Hafeez M Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883905 [TBL] [Abstract][Full Text] [Related]
8. Image Classification of Wheat Rust Based on Ensemble Learning. Pan Q; Gao M; Wu P; Yan J; AbdelRahman MAE Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015808 [TBL] [Abstract][Full Text] [Related]
9. Smallholders' coping mechanisms with wheat rust epidemics: Lessons from Ethiopia. Jaleta M; Hodson D; Abeyo B; Yirga C; Erenstein O PLoS One; 2019; 14(7):e0219327. PubMed ID: 31365535 [TBL] [Abstract][Full Text] [Related]
10. Monitoring yellow rust progression during spring critical wheat growth periods using multi-temporal Sentinel-2 imagery. Ma H; Zhang J; Huang W; Ruan C; Chen D; Zhang H; Zhou X; Gui Z Pest Manag Sci; 2024 Dec; 80(12):6082-6095. PubMed ID: 39139028 [TBL] [Abstract][Full Text] [Related]
11. Brain tumor classification: a novel approach integrating GLCM, LBP and composite features. Dheepak G; J AC; Vaishali D Front Oncol; 2023; 13():1248452. PubMed ID: 38352298 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of Pakistan wheat germplasms for stripe rust resistance using molecular markers. Sobia T; Muhammad A; Chen X Sci China Life Sci; 2010 Sep; 53(9):1123-34. PubMed ID: 21104373 [TBL] [Abstract][Full Text] [Related]
14. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Lee HS; Hong H; Jung DC; Park S; Kim J Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Stem Rust Disease in Wheat Fields by Drone Hyperspectral Imaging. Abdulridha J; Min A; Rouse MN; Kianian S; Isler V; Yang C Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112495 [TBL] [Abstract][Full Text] [Related]
16. New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery. Zheng Q; Huang W; Cui X; Shi Y; Liu L Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29543736 [TBL] [Abstract][Full Text] [Related]
18. Diversity in Khan MR; Imtiaz M; Ahmad B; Munir A; Rattu AUR; Facho ZH; Ali S Mycologia; 2020; 112(5):871-879. PubMed ID: 32813615 [TBL] [Abstract][Full Text] [Related]
19. A comparative study of Machine Learning-based classification of Tomato fungal diseases: Application of GLCM texture features. Nyasulu C; Diattara A; Traore A; Ba C; Diedhiou PM; Sy Y; Raki H; Peluffo-Ordóñez DH Heliyon; 2023 Nov; 9(11):e21697. PubMed ID: 38027996 [TBL] [Abstract][Full Text] [Related]
20. Estimation of potato above-ground biomass based on unmanned aerial vehicle red-green-blue images with different texture features and crop height. Liu Y; Feng H; Yue J; Jin X; Li Z; Yang G Front Plant Sci; 2022; 13():938216. PubMed ID: 36092445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]