These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35009694)

  • 1. A Way of Bionic Control Based on EI, EMG, and FMG Signals.
    Briko A; Kapravchuk V; Kobelev A; Hammoud A; Leonhardt S; Ngo C; Gulyaev Y; Shchukin S
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-density force myography: A possible alternative for upper-limb prosthetic control.
    Radmand A; Scheme E; Englehart K
    J Rehabil Res Dev; 2016; 53(4):443-56. PubMed ID: 27532260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research on proportional control system of prosthetic hand based on FMG signals].
    Yi J; Yu H; Li P; Zhao S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Feb; 30(1):39-44. PubMed ID: 23488135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Counting Grasping Action Using Force Myography: An Exploratory Study With Healthy Individuals.
    Xiao ZG; Menon C
    JMIR Rehabil Assist Technol; 2017 May; 4(1):e5. PubMed ID: 28582263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A preliminary investigation on the utility of temporal features of Force Myography in the two-class problem of grasp vs. no-grasp in the presence of upper-extremity movements.
    Sadarangani GP; Menon C
    Biomed Eng Online; 2017 May; 16(1):59. PubMed ID: 28511661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action interference in simultaneous and proportional myocontrol: comparing force- and electromyography.
    Nowak M; Eiband T; Ramírez ER; Castellini C
    J Neural Eng; 2020 Mar; 17(2):026011. PubMed ID: 32109906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FMG Versus EMG: A Comparison of Usability for Real-Time Pattern Recognition Based Control.
    Belyea A; Englehart K; Scheme E
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3098-3104. PubMed ID: 30794502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A proportional control scheme for high density force myography.
    Belyea AT; Englehart KB; Scheme EJ
    J Neural Eng; 2018 Aug; 15(4):046029. PubMed ID: 29845972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Ultra-Sensitive Modular Hybrid EMG-FMG Sensor with Floating Electrodes.
    Ke A; Huang J; Chen L; Gao Z; He J
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32846982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Low-Density Force Myography Armband for Classification of Upper Limb Gestures.
    Rehman MU; Shah K; Haq IU; Iqbal S; Ismail MA; Selimefendigil F
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Wearable, Multi-Frequency Device to Measure Muscle Activity Combining Simultaneous Electromyography and Electrical Impedance Myography.
    Ngo C; Munoz C; Lueken M; Hülkenberg A; Bollheimer C; Briko A; Kobelev A; Shchukin S; Leonhardt S
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force Myography for Monitoring Grasping in Individuals with Stroke with Mild to Moderate Upper-Extremity Impairments: A Preliminary Investigation in a Controlled Environment.
    Sadarangani GP; Jiang X; Simpson LA; Eng JJ; Menon C
    Front Bioeng Biotechnol; 2017; 5():42. PubMed ID: 28798912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Investigation on the Sampling Frequency of the Upper-Limb Force Myographic Signals.
    Xiao ZG; Menon C
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31141926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does force myography recorded at the wrist correlate to resistance load levels during bicep curls?
    Xiao ZG; Menon C
    J Biomech; 2019 Jan; 83():310-314. PubMed ID: 30522877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review of Force Myography Research and Development.
    Xiao ZG; Menon C
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review of EMG-, FMG-, and EIT-Based Biosensors and Relevant Human-Machine Interactivities and Biomedical Applications.
    Zheng Z; Wu Z; Zhao R; Ni Y; Jing X; Gao S
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wrist-worn wearables based on force myography: on the significance of user anthropometry.
    Delva ML; Lajoie K; Khoshnam M; Menon C
    Biomed Eng Online; 2020 Jun; 19(1):46. PubMed ID: 32532358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time simultaneous and proportional myoelectric control using intramuscular EMG.
    Smith LH; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Dec; 11(6):066013. PubMed ID: 25394366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the Geometric Parameters of Electrode Systems for Electrical Impedance Myography: A Preliminary Study.
    Briko A; Kapravchuk V; Kobelev A; Tikhomirov A; Hammoud A; Al-Harosh M; Leonhardt S; Ngo C; Gulyaev Y; Shchukin S
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating Exerted Hand Force via Force Myography to Interact with a Biaxial Stage in Real-Time by Learning Human Intentions: A Preliminary Investigation.
    Zakia U; Menon C
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32276456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.