These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 35009710)
1. Early Diagnosis of Multiple Sclerosis Using Swept-Source Optical Coherence Tomography and Convolutional Neural Networks Trained with Data Augmentation. López-Dorado A; Ortiz M; Satue M; Rodrigo MJ; Barea R; Sánchez-Morla EM; Cavaliere C; Rodríguez-Ascariz JM; Orduna-Hospital E; Boquete L; Garcia-Martin E Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009710 [TBL] [Abstract][Full Text] [Related]
2. Early diagnosis of multiple sclerosis by OCT analysis using Cohen's d method and a neural network as classifier. Garcia-Martin E; Ortiz M; Boquete L; Sánchez-Morla EM; Barea R; Cavaliere C; Vilades E; Orduna E; Rodrigo MJ Comput Biol Med; 2021 Feb; 129():104165. PubMed ID: 33302162 [TBL] [Abstract][Full Text] [Related]
3. Computer-Aided Diagnosis of Multiple Sclerosis Using a Support Vector Machine and Optical Coherence Tomography Features. Cavaliere C; Vilades E; Alonso-Rodríguez MC; Rodrigo MJ; Pablo LE; Miguel JM; López-Guillén E; Morla EMS; Boquete L; Garcia-Martin E Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31816925 [TBL] [Abstract][Full Text] [Related]
4. Diagnosis of multiple sclerosis using optical coherence tomography supported by artificial intelligence. Ortiz M; Mallen V; Boquete L; Sánchez-Morla EM; Cordón B; Vilades E; Dongil-Moreno FJ; Miguel-Jiménez JM; Garcia-Martin E Mult Scler Relat Disord; 2023 Jun; 74():104725. PubMed ID: 37086637 [TBL] [Abstract][Full Text] [Related]
5. HTC-retina: A hybrid retinal diseases classification model using transformer-Convolutional Neural Network from optical coherence tomography images. Laouarem A; Kara-Mohamed C; Bourennane EB; Hamdi-Cherif A Comput Biol Med; 2024 Aug; 178():108726. PubMed ID: 38878400 [TBL] [Abstract][Full Text] [Related]
6. Swept source optical coherence tomography to early detect multiple sclerosis disease. The use of machine learning techniques. Pérez Del Palomar A; Cegoñino J; Montolío A; Orduna E; Vilades E; Sebastián B; Pablo LE; Garcia-Martin E PLoS One; 2019; 14(5):e0216410. PubMed ID: 31059539 [TBL] [Abstract][Full Text] [Related]
7. Advancing glaucoma detection with convolutional neural networks: a paradigm shift in ophthalmology. Haja SA; Mahadevappa V Rom J Ophthalmol; 2023; 67(3):222-237. PubMed ID: 37876506 [TBL] [Abstract][Full Text] [Related]
8. CNN-based CP-OCT sensor integrated with a subretinal injector for retinal boundary tracking and injection guidance. Lee S; Kang J J Biomed Opt; 2021 Jun; 26(6):. PubMed ID: 34196137 [TBL] [Abstract][Full Text] [Related]
9. Multi-scale convolutional neural network for automated AMD classification using retinal OCT images. Sotoudeh-Paima S; Jodeiri A; Hajizadeh F; Soltanian-Zadeh H Comput Biol Med; 2022 May; 144():105368. PubMed ID: 35259614 [TBL] [Abstract][Full Text] [Related]
10. The macular retinal ganglion cell layer as a biomarker for diagnosis and prognosis in multiple sclerosis: A deep learning approach. Montolío A; Cegoñino J; Garcia-Martin E; Pérez Del Palomar A Acta Ophthalmol; 2024 May; 102(3):e272-e284. PubMed ID: 37300357 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning-based Diagnosis of Glaucoma Using Wide-field Optical Coherence Tomography Images. Shin Y; Cho H; Jeong HC; Seong M; Choi JW; Lee WJ J Glaucoma; 2021 Sep; 30(9):803-812. PubMed ID: 33979115 [TBL] [Abstract][Full Text] [Related]
13. Attention to Lesion: Lesion-Aware Convolutional Neural Network for Retinal Optical Coherence Tomography Image Classification. Fang L; Wang C; Li S; Rabbani H; Chen X; Liu Z IEEE Trans Med Imaging; 2019 Aug; 38(8):1959-1970. PubMed ID: 30763240 [TBL] [Abstract][Full Text] [Related]
14. Retinal Flow Density Changes in Early-stage Parkinson's Disease Investigated by Swept-Source Optical Coherence Tomography Angiography. Zhang Y; Zhang D; Gao Y; Yang L; Tao Y; Xu H; Man S; Zhang M; Xu Y Curr Eye Res; 2021 Dec; 46(12):1886-1891. PubMed ID: 34348531 [No Abstract] [Full Text] [Related]
15. Agreement between Two Swept-source Optical Coherence Tomography: Optic Nerve Head, Retinal Nerve Fiber Layer and Ganglion Cell Layers in Healthy Eyes. Prada AM; Tello A; Rangel CM; Galvis V; Espinoza G J Curr Glaucoma Pract; 2023; 17(2):85-90. PubMed ID: 37485462 [TBL] [Abstract][Full Text] [Related]
16. Automatic diagnosis of macular diseases from OCT volume based on its two-dimensional feature map and convolutional neural network with attention mechanism. Sun Y; Zhang H; Yao X J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32940026 [TBL] [Abstract][Full Text] [Related]
17. Towards more efficient ophthalmic disease classification and lesion location via convolution transformer. Wen H; Zhao J; Xiang S; Lin L; Liu C; Wang T; An L; Liang L; Huang B Comput Methods Programs Biomed; 2022 Jun; 220():106832. PubMed ID: 35525213 [TBL] [Abstract][Full Text] [Related]
18. OCT and OCT-A biomarkers in multiple sclerosis - review. Bostan M; Pîrvulescu R; Tiu C; Bujor I; Popa-Cherecheanu A Rom J Ophthalmol; 2023; 67(2):107-110. PubMed ID: 37522023 [No Abstract] [Full Text] [Related]
19. Using Convolutional Neural Networks for Classification of Bifurcation Regions in IVOCT Images. Miyagawa M; Costa MGF; Gutierrez MA; Costa JPGF; Costa Filho CFF Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5597-5600. PubMed ID: 31947124 [TBL] [Abstract][Full Text] [Related]
20. The classification of stages of epiretinal membrane using convolutional neural network on optical coherence tomography image. Hung CL; Lin KH; Lee YK; Mrozek D; Tsai YT; Lin CH Methods; 2023 Jun; 214():28-34. PubMed ID: 37116670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]