These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 35009762)

  • 1. Systematic Approach for Remote Sensing of Historical Conflict Landscapes with UAV-Based Laserscanning.
    Storch M; Jarmer T; Adam M; de Lange N
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UAV-Based Digital Terrain Model Generation under Leaf-Off Conditions to Support Teak Plantations Inventories in Tropical Dry Forests. A Case of the Coastal Region of Ecuador.
    Aguilar FJ; Rivas JR; Nemmaoui A; Peñalver A; Aguilar MA
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31027155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study.
    Eker R; Aydın A; Hübl J
    Environ Monit Assess; 2017 Dec; 190(1):28. PubMed ID: 29256067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management.
    Torres-Sánchez J; López-Granados F; De Castro AI; Peña-Barragán JM
    PLoS One; 2013; 8(3):e58210. PubMed ID: 23483997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Small unmanned aerial vehicles for low-altitude remote sensing and its application progress in ecology.].
    Sun ZY; Chen YQ; Yang L; Tang GL; Yuan SX; Lin ZW
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):528-536. PubMed ID: 29749161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.
    Huang KL; Chiu CC; Chiu SY; Teng YJ; Hao SS
    Sensors (Basel); 2015 Jul; 15(7):16848-65. PubMed ID: 26184213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Karst vegetation coverage detection using UAV multispectral vegetation indices and machine learning algorithm.
    Pan W; Wang X; Sun Y; Wang J; Li Y; Li S
    Plant Methods; 2023 Jan; 19(1):7. PubMed ID: 36691062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States.
    Swetnam TL; Gillan JK; Sankey TT; McClaran MP; Nichols MH; Heilman P; McVay J
    Front Plant Sci; 2017; 8():2144. PubMed ID: 29379511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.
    Gillan JK; Karl JW; Duniway M; Elaksher A
    J Environ Manage; 2014 Nov; 144():226-35. PubMed ID: 24973611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Comparison of UAS-Borne LiDAR Systems for High-Resolution Forested Wetland Mapping.
    Pricope NG; Halls JN; Mapes KL; Baxley JB; Wu JJ
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Feasibility of Modelling the Crown Profile of
    Quan Y; Li M; Zhen Z; Hao Y; Wang B
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32998340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unmanned aerial survey of fallen trees in a deciduous broadleaved forest in eastern Japan.
    Inoue T; Nagai S; Yamashita S; Fadaei H; Ishii R; Okabe K; Taki H; Honda Y; Kajiwara K; Suzuki R
    PLoS One; 2014; 9(10):e109881. PubMed ID: 25279817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A low-altitude public air route network for UAV management constructed by global subdivision grids.
    Zhai W; Han B; Li D; Duan J; Cheng C
    PLoS One; 2021; 16(4):e0249680. PubMed ID: 33852616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Analysis of the Influence of Flight Parameters in the Generation of Unmanned Aerial Vehicle (UAV) Orthomosaicks to Survey Archaeological Areas.
    Mesas-Carrascosa FJ; Notario García MD; Meroño de Larriva JE; García-Ferrer A
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27809293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision Landing Test and Simulation of the Agricultural UAV on Apron.
    Guo Y; Guo J; Liu C; Xiong H; Chai L; He D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of DSM Based on Radiometric Transformation of UAV Data.
    Chaudhry MH; Ahmad A; Gulzar Q; Farid MS; Shahabi H; Al-Ansari N
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33673425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shaping pre-modern digital terrain models: The former topography at Charlemagne's canal construction site.
    Schmidt J; Werther L; Zielhofer C
    PLoS One; 2018; 13(7):e0200167. PubMed ID: 29975746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The application of low-altitude near-infrared aerial photography for detecting clandestine burials using a UAV and low-cost unmodified digital camera.
    Evers R; Masters P
    Forensic Sci Int; 2018 Aug; 289():408-418. PubMed ID: 30025566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using canopy height model derived from UAV imagery as an auxiliary for spectral data to estimate the canopy cover of mixed broadleaf forests.
    Miraki M; Sohrabi H
    Environ Monit Assess; 2021 Dec; 194(1):45. PubMed ID: 34958415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of tree species based on the fusion of UAV hyperspectral image and LiDAR data in a coniferous and broad-leaved mixed forest in Northeast China.
    Zhong H; Lin W; Liu H; Ma N; Liu K; Cao R; Wang T; Ren Z
    Front Plant Sci; 2022; 13():964769. PubMed ID: 36212338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.