These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35009786)

  • 1. Stabilization of the Cart-Inverted-Pendulum System Using State-Feedback Pole-Independent MPC Controllers.
    Messikh L; Guechi EH; Blažič S
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of an inverted pendulum-cart system by fractional PI-state feedback.
    Bettayeb M; Boussalem C; Mansouri R; Al-Saggaf UM
    ISA Trans; 2014 Mar; 53(2):508-16. PubMed ID: 24315056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermittent Feedback-Control Strategy for Stabilizing Inverted Pendulum on Manually Controlled Cart as Analogy to Human Stick Balancing.
    Yoshikawa N; Suzuki Y; Kiyono K; Nomura T
    Front Comput Neurosci; 2016; 10():34. PubMed ID: 27148031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System.
    Tang Y; Zhou D; Jiang W
    PLoS One; 2016; 11(8):e0160416. PubMed ID: 27482707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictor-based control for an inverted pendulum subject to networked time delay.
    Ghommam J; Mnif F
    ISA Trans; 2017 Mar; 67():306-316. PubMed ID: 28126273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear control of the flywheel inverted pendulum.
    Olivares M; Albertos P
    ISA Trans; 2014 Sep; 53(5):1396-403. PubMed ID: 24480638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of a Cart Inverted Pendulum: Improving the Intermittent Feedback Strategy to Match the Limits of Human Performance.
    Morasso P; Nomura T; Suzuki Y; Zenzeri J
    Front Comput Neurosci; 2019; 13():16. PubMed ID: 31024281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronizing chaos in an experimental chaotic pendulum using methods from linear control theory.
    Kaart S; Schouten JC; van den Bleek CM
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):5303-12. PubMed ID: 11969490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-excited oscillations in an inverted cart-pendulum based on the two-relay approach.
    Aguilar LT; Ortega JA; Ferreira A
    ISA Trans; 2022 Feb; 121():306-315. PubMed ID: 33906733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RBF-ARX model-based fast robust MPC approach to an inverted pendulum.
    Tian X; Peng H; Zhou F; Peng X
    ISA Trans; 2019 Oct; 93():255-267. PubMed ID: 30876756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controller Gains of an Inverted Pendulum are Influenced by the Visual Feedback Position.
    Cesonis J; Leib R; Franklin S; Franklin DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5068-5071. PubMed ID: 31946998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rule-based neural controller for inverted pendulum system.
    Hao J; Vandewalle J; Tan S
    Int J Neural Syst; 1993 Mar; 4(1):55-64. PubMed ID: 8049790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system.
    El-Bardini M; El-Nagar AM
    ISA Trans; 2014 May; 53(3):732-43. PubMed ID: 24661774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integral backstepping sliding mode control for underactuated systems: swing-up and stabilization of the Cart-Pendulum System.
    Adhikary N; Mahanta C
    ISA Trans; 2013 Nov; 52(6):870-80. PubMed ID: 23932857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust and novel two degree of freedom fractional controller based on two-loop topology for inverted pendulum.
    Dwivedi P; Pandey S; Junghare AS
    ISA Trans; 2018 Apr; 75():189-206. PubMed ID: 29458973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of single input Hamiltonian systems based on the flatness of their tangent linearization.
    Sira-Ramírez H; Zurita-Bustamante EW; Luviano-Juárez A
    ISA Trans; 2022 Aug; 127():461-472. PubMed ID: 34535272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cascade direct adaptive fuzzy control design for a nonlinear two-axis inverted-pendulum servomechanism.
    Wai RJ; Kuo MA; Lee JD
    IEEE Trans Syst Man Cybern B Cybern; 2008 Apr; 38(2):439-54. PubMed ID: 18348926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous Collision Avoidance Using MPC with LQR-Based Weight Transformation.
    Taherian S; Halder K; Dixit S; Fallah S
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34201820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T-S fuzzy model predictive speed control of electrical vehicles.
    Khooban MH; Vafamand N; Niknam T
    ISA Trans; 2016 Sep; 64():231-240. PubMed ID: 27167988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural network control for position tracking of a two-axis inverted pendulum system: experimental studies.
    Jung S; Cho HT; Hsia TC
    IEEE Trans Neural Netw; 2007 Jul; 18(4):1042-8. PubMed ID: 17668660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.