These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35009825)

  • 1. Multi-Task Model for Esophageal Lesion Analysis Using Endoscopic Images: Classification with Image Retrieval and Segmentation with Attention.
    Yu X; Tang S; Cheang CF; Yu HH; Choi IC
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnosis of Esophageal Lesions by Multi-Classification and Segmentation Using an Improved Multi-Task Deep Learning Model.
    Tang S; Yu X; Cheang CF; Hu Z; Fang T; Choi IC; Yu HH
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CLELNet: A continual learning network for esophageal lesion analysis on endoscopic images.
    Tang S; Yu X; Cheang CF; Ji X; Yu HH; Choi IC
    Comput Methods Programs Biomed; 2023 Apr; 231():107399. PubMed ID: 36780717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformer-based multi-task learning for classification and segmentation of gastrointestinal tract endoscopic images.
    Tang S; Yu X; Cheang CF; Liang Y; Zhao P; Yu HH; Choi IC
    Comput Biol Med; 2023 May; 157():106723. PubMed ID: 36907035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Multi-Attention Guided Multi-Task Learning Network for Automatic Gastric Tumor Segmentation and Lymph Node Classification.
    Zhang Y; Li H; Du J; Qin J; Wang T; Chen Y; Liu B; Gao W; Ma G; Lei B
    IEEE Trans Med Imaging; 2021 Jun; 40(6):1618-1631. PubMed ID: 33646948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-aided diagnostic system with automated deep learning method based on the AutoGluon framework improved the diagnostic accuracy of early esophageal cancer.
    Gao X; Lin J; Qu C; Wang C; Wu A; Zhu J; Xu C
    J Gastrointest Oncol; 2024 Apr; 15(2):535-543. PubMed ID: 38756633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential diagnosis for esophageal protruded lesions using a deep convolution neural network in endoscopic images.
    Zhang M; Zhu C; Wang Y; Kong Z; Hua Y; Zhang W; Si X; Ye B; Xu X; Li L; Heng D; Liu B; Tian S; Wu J; Dang Y; Zhang G
    Gastrointest Endosc; 2021 Jun; 93(6):1261-1272.e2. PubMed ID: 33065026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endoscopic detection and differentiation of esophageal lesions using a deep neural network.
    Ohmori M; Ishihara R; Aoyama K; Nakagawa K; Iwagami H; Matsuura N; Shichijo S; Yamamoto K; Nagaike K; Nakahara M; Inoue T; Aoi K; Okada H; Tada T
    Gastrointest Endosc; 2020 Feb; 91(2):301-309.e1. PubMed ID: 31585124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic detection of small bowel lesions with different bleeding risks based on deep learning models.
    Zhang RY; Qiang PP; Cai LJ; Li T; Qin Y; Zhang Y; Zhao YQ; Wang JP
    World J Gastroenterol; 2024 Jan; 30(2):170-183. PubMed ID: 38312122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of endoscopic ultrasonography for detecting esophageal lesions based on convolutional neural network.
    Liu GS; Huang PY; Wen ML; Zhuang SS; Hua J; He XP
    World J Gastroenterol; 2022 Jun; 28(22):2457-2467. PubMed ID: 35979257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ELNet:Automatic classification and segmentation for esophageal lesions using convolutional neural network.
    Wu Z; Ge R; Wen M; Liu G; Chen Y; Zhang P; He X; Hua J; Luo L; Li S
    Med Image Anal; 2021 Jan; 67():101838. PubMed ID: 33129148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of an endoscopic images-based deep learning model for detection with nasopharyngeal malignancies.
    Li C; Jing B; Ke L; Li B; Xia W; He C; Qian C; Zhao C; Mai H; Chen M; Cao K; Mo H; Guo L; Chen Q; Tang L; Qiu W; Yu Y; Liang H; Huang X; Liu G; Li W; Wang L; Sun R; Zou X; Guo S; Huang P; Luo D; Qiu F; Wu Y; Hua Y; Liu K; Lv S; Miao J; Xiang Y; Sun Y; Guo X; Lv X
    Cancer Commun (Lond); 2018 Sep; 38(1):59. PubMed ID: 30253801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review.
    Baig R; Bibi M; Hamid A; Kausar S; Khalid S
    Curr Med Imaging; 2020; 16(5):513-533. PubMed ID: 32484086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SHA-MTL: soft and hard attention multi-task learning for automated breast cancer ultrasound image segmentation and classification.
    Zhang G; Zhao K; Hong Y; Qiu X; Zhang K; Wei B
    Int J Comput Assist Radiol Surg; 2021 Oct; 16(10):1719-1725. PubMed ID: 34254225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic intraprostatic lesion segmentation in multiparametric magnetic resonance images with proposed multiple branch UNet.
    Chen Y; Xing L; Yu L; Bagshaw HP; Buyyounouski MK; Han B
    Med Phys; 2020 Dec; 47(12):6421-6429. PubMed ID: 33012016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using deep learning to assess the function of gastroesophageal flap valve according to the Hill classification system.
    Ge Z; Fang Y; Chang J; Yu Z; Qiao Y; Zhang J; Yang X; Duan Z
    Ann Med; 2023; 55(2):2279239. PubMed ID: 37949083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Pancreatic Cyst Lesion Segmentation on EUS Images Using a Deep-Learning Approach.
    Oh S; Kim YJ; Park YT; Kim KG
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AI analysis and modified type classification for endocytoscopic observation of esophageal lesions.
    Kumagai Y; Takubo K; Sato T; Ishikawa H; Yamamoto E; Ishiguro T; Hatano S; Toyomasu Y; Kawada K; Matsuyama T; Mochiki E; Ishida H; Tada T
    Dis Esophagus; 2022 Sep; 35(9):. PubMed ID: 35292794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos).
    Guo L; Xiao X; Wu C; Zeng X; Zhang Y; Du J; Bai S; Xie J; Zhang Z; Li Y; Wang X; Cheung O; Sharma M; Liu J; Hu B
    Gastrointest Endosc; 2020 Jan; 91(1):41-51. PubMed ID: 31445040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LiverNet: efficient and robust deep learning model for automatic diagnosis of sub-types of liver hepatocellular carcinoma cancer from H&E stained liver histopathology images.
    Aatresh AA; Alabhya K; Lal S; Kini J; Saxena PUP
    Int J Comput Assist Radiol Surg; 2021 Sep; 16(9):1549-1563. PubMed ID: 34053009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.