These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 35009848)

  • 1. Application of Reinforcement Learning and Deep Learning in Multiple-Input and Multiple-Output (MIMO) Systems.
    Naeem M; De Pietro G; Coronato A
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Reinforcement Learning-Based Coordinated Beamforming for mmWave Massive MIMO Vehicular Networks.
    Tarafder P; Choi W
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning for Massive MIMO Channel State Acquisition and Feedback.
    Boloursaz Mashhadi M; Gündüz D
    J Indian Inst Sci; 2020; 100(2):369-382. PubMed ID: 32624647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Massive MIMO Systems for 5G and Beyond Networks-Overview, Recent Trends, Challenges, and Future Research Direction.
    Chataut R; Akl R
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32408531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning-Based Channel Estimation for mmWave Massive MIMO Systems in Mixed-ADC Architecture.
    Zhang R; Tan W; Nie W; Wu X; Liu T
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Learning Approach for MIMO-NOMA Downlink Signal Detection.
    Lin C; Chang Q; Li X
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31159505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement Learning-Based Joint User Pairing and Power Allocation in MIMO-NOMA Systems.
    Lee J; So J
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrum-efficient user grouping and resource allocation based on deep reinforcement learning for mmWave massive MIMO-NOMA systems.
    Wang M; Liu X; Wang F; Liu Y; Qiu T; Jin M
    Sci Rep; 2024 Apr; 14(1):8884. PubMed ID: 38632323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy Efficiency and Spectral Efficiency Tradeoff in Massive MIMO Multicast Transmission with Statistical CSI.
    Jiang B; Ren B; Huang Y; Chen T; You L; Wang W
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, Challenges and Developments for 5G Massive MIMO Antenna Systems at Sub 6-GHz Band: A Review.
    Ibrahim SK; Singh MJ; Al-Bawri SS; Ibrahim HH; Islam MT; Islam MS; Alzamil A; Abdulkawi WM
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy Efficiency of User-Centric, Cell-Free Massive MIMO-OFDM with Instantaneous CSI.
    Han T; Zhao D
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MIMO Antennas: Design Approaches, Techniques and Applications.
    Sharma P; Tiwari RN; Singh P; Kumar P; Kanaujia BK
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in MIMO Antenna Design for 5G: A Comprehensive Review.
    Raj T; Mishra R; Kumar P; Kapoor A
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Survey of Deep Learning Based NOMA: State of the Art, Key Aspects, Open Challenges and Future Trends.
    Mohsan SAH; Li Y; Shvetsov AV; Varela-Aldás J; Mostafa SM; Elfikky A
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance evaluation of frequency division duplex (FDD) massive multiple input multiple output (MIMO) under different correlation models.
    Abdul-Hadi AM; Abdulrazzaq Naser M; Alsabah M; Abdulhussain SH; Mahmmod BM
    PeerJ Comput Sci; 2022; 8():e1017. PubMed ID: 35875642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of Deep-Learning-Based CSI Feedback Reporting on 5G NR-Compliant Link-Level Simulator.
    Riviello DG; Tuninato R; Zimaglia E; Fantini R; Garello R
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning-Based 5G-and-Beyond Channel Estimation for MIMO-OFDM Communication Systems.
    Le HA; Van Chien T; Nguyen TH; Choo H; Nguyen VD
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning for 1-bit compressed sensing-based superimposed CSI feedback.
    Qing C; Ye Q; Cai B; Liu W; Wang J
    PLoS One; 2022; 17(3):e0265109. PubMed ID: 35271663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study and Investigation on 5G Technology: A Systematic Review.
    Dangi R; Lalwani P; Choudhary G; You I; Pau G
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning-Based Joint CSI Feedback and Hybrid Precoding in FDD mmWave Massive MIMO Systems.
    Sun Q; Zhao H; Wang J; Chen W
    Entropy (Basel); 2022 Mar; 24(4):. PubMed ID: 35455104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.