These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35009877)

  • 21. High-speed secure key distribution based on interference spectrum-shift keying with signal mutual modulation in commonly driven chaos synchronization.
    Deng Z; Gao X; An Y; Wang A; Fu S; Wang Y; Yuwen Q; Gao Z
    Opt Express; 2023 Dec; 31(25):42449-42463. PubMed ID: 38087619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Secure Transmission Scheme Based on Artificial Fading for Wireless CrowdSensing Networks.
    Xu ZJ; Chen FN; Wu Y; Gong Y
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30336577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ergodic chaos-based communication schemes.
    Leung H; Yu H; Murali K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036203. PubMed ID: 12366220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Closed-Form Expressions of Upper Bound for Polarization-MDCSK System.
    Miao M; Wang L; Xu W
    Entropy (Basel); 2023 Aug; 25(9):. PubMed ID: 37761566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A soft decoding algorithm and hardware implementation for the visual prosthesis based on high order soft demodulation.
    Yang Y; Quan N; Bu J; Li X; Yu N
    Biomed Eng Online; 2016 Sep; 15(1):110. PubMed ID: 27671349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analog-digital hybrid chaos-based long-haul coherent optical secure communication.
    Fu Y; Cheng M; Shao W; Luo H; Li D; Deng L; Yang Q; Liu D
    Opt Lett; 2021 Apr; 46(7):1506-1509. PubMed ID: 33793476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physical-Layer Security in Power-Domain NOMA Based on Different Chaotic Maps.
    Abu Al-Atta M; Said KA; Mohamed MA; Raslan W
    Entropy (Basel); 2023 Jan; 25(1):. PubMed ID: 36673282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coherent optical communication using polarization multiple-input-multiple-output.
    Han Y; Li G
    Opt Express; 2005 Sep; 13(19):7527-34. PubMed ID: 19498778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulsed-chaos MIMO radar based on a single flat-spectrum and Delta-like autocorrelation optical chaos source.
    Feng W; Jiang N; Zhang Y; Jin J; Zhao A; Liu S; Qiu K
    Opt Express; 2022 Feb; 30(4):4782-4792. PubMed ID: 35209452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signal-to-noise ratio degradation analysis for optoelectronic feedback-based chaotic optical communication systems.
    Xie Y; Yang Z; Shi M; Hu W; Yi L
    Opt Lett; 2023 Oct; 48(19):5005-5008. PubMed ID: 37773371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wireless-optical-communication-based cooperative IoT and IoUT system for ocean monitoring applications.
    Naik RP; Simha GDG; Krishnan P
    Appl Opt; 2021 Oct; 60(29):9067-9073. PubMed ID: 34623987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving decryption quality of optical chaos communication using neural networks.
    Fan X; Mao X; Wang L; Fu S; Wang A; Wang Y
    Opt Lett; 2024 Aug; 49(15):4445-4448. PubMed ID: 39090955
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical chaotic communication system based on time-delayed shift keying and common-signal-induced synchronization.
    Li M; Zhou X; Wang F; Yang G; Bi M; Xu M; Hu M; Li H
    Opt Express; 2024 Apr; 32(9):16307-16318. PubMed ID: 38859261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scheme of coherent optical chaos communication.
    Wang L; Mao X; Wang A; Wang Y; Gao Z; Li S; Yan L
    Opt Lett; 2020 Sep; 45(17):4762-4765. PubMed ID: 32870851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance analysis of cooperative virtual MIMO systems for wireless sensor networks.
    Rafique Z; Seet BC; Al-Anbuky A
    Sensors (Basel); 2013 May; 13(6):7033-52. PubMed ID: 23760087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sparse Space Shift Keying Modulation with Enhanced Constellation Mapping.
    Wang T; Huang K; Liu M; He R
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy and Spectrally Efficient Modulation Scheme for IoT Applications.
    Hussein HS; Elsayed M; Fakhry M; Sayed Mohamed U
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Asynchronous Chirp Slope Keying for Underwater Acoustic Communication.
    Schott DJ; Gabbrielli A; Xiong W; Fischer G; Höflinger F; Wendeberg J; Schindelhauer C; Rupitsch SJ
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34068628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Displacement damage in bit error ratio performance of on-off keying, pulse position modulation, differential phase shift keying, and homodyne binary phase-shift keying-based optical intersatellite communication system.
    Liu Y; Zhao S; Gong Z; Zhao J; Dong C; Li X
    Appl Opt; 2016 Apr; 55(11):3069-76. PubMed ID: 27139876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of controllable parameter synchronization on the ensemble average bit error rate of space-to-ground downlink chaos laser communication system.
    Li M; Hong Y; Song Y; Zhang X
    Opt Express; 2018 Feb; 26(3):2954-2964. PubMed ID: 29401828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.