These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 35009892)
1. Applicability of Cost-Effective GNSS Sensors for Crustal Deformation Studies. Tunini L; Zuliani D; Magrin A Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009892 [TBL] [Abstract][Full Text] [Related]
2. Testing the Performance of Multi-Frequency Low-Cost GNSS Receivers and Antennas. Hamza V; Stopar B; Sterle O Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809368 [TBL] [Abstract][Full Text] [Related]
3. Low-Cost Dual-Frequency GNSS Receivers and Antennas for Surveying in Urban Areas. Hamza V; Stopar B; Sterle O; Pavlovčič-Prešeren P Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36905063 [TBL] [Abstract][Full Text] [Related]
4. Testing Multi-Frequency Low-Cost GNSS Receivers for Geodetic Monitoring Purposes. Hamza V; Stopar B; Ambrožič T; Turk G; Sterle O Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764406 [TBL] [Abstract][Full Text] [Related]
5. GNSS-R with Low-Cost Receivers for Retrieval of Antenna Height from Snow Surfaces Using Single-Frequency Observations. Rover S; Vitti A Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847416 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of Low-Cost GNSS Receiver under Demanding Conditions in RTK Network Mode. Janos D; Kuras P Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450997 [TBL] [Abstract][Full Text] [Related]
7. Low-Cost GNSS Receivers for Local Monitoring: Experimental Simulation, and Analysis of Displacements. Biagi L; Grec FC; Negretti M Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983707 [TBL] [Abstract][Full Text] [Related]
8. Linear and Nonlinear Deformation Effects in the Permanent GNSS Network of Cyprus. Danezis C; Chatzinikos M; Kotsakis C Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32235810 [TBL] [Abstract][Full Text] [Related]
9. Experimental verification of seafloor crustal deformation observations by UAV-based GNSS-A. Yokota Y; Kaneda M; Hashimoto T; Yamaura S; Kouno K; Hirakawa Y Sci Rep; 2023 Mar; 13(1):4105. PubMed ID: 36914688 [TBL] [Abstract][Full Text] [Related]
10. The Real-Time Detection of Vertical Displacements by Low-Cost GNSS Receivers Using Precise Point Positioning. Maciejewska A; Lackowski M; Hadas T; Maciuk K Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275510 [TBL] [Abstract][Full Text] [Related]
11. A Field Calibration Solution to Achieve High-Grade-Level Performance for Low-Cost Dual-Frequency GNSS Receiver and Antennas. Krietemeyer A; van der Marel H; van de Giesen N; Ten Veldhuis MC Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336435 [TBL] [Abstract][Full Text] [Related]
12. An Innovative Low-Power, Low-Cost, Multi-Constellation Geodetic-Grade Global Navigation Satellite System Reference Station for the Densification of Permanent Networks: The GREAT Project. Curone D; Savarese G; Antonini M; Baucry R; Amani E; Boulandet A; Cataldo M; Chambon P; Chersich M; Hussein AB; Menuel B; Tsaturyan A Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447880 [TBL] [Abstract][Full Text] [Related]
13. Tracking Performance in Endurance Racing Sports: Evaluation of the Accuracy Offered by Three Commercial GNSS Receivers Aimed at the Sports Market. Gløersen Ø; Kocbach J; Gilgien M Front Physiol; 2018; 9():1425. PubMed ID: 30356794 [TBL] [Abstract][Full Text] [Related]
14. Feasibility of Consumer Grade GNSS Receivers for the Integration in Multi-Sensor-Systems. Kersten T; Paffenholz JA Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32357583 [TBL] [Abstract][Full Text] [Related]
15. Robustness against Chirp Signal Interference of On-Board Vehicle Geodetic and Low-Cost GNSS Receivers. Dimc F; Pavlovčič-Prešeren P; Bažec M Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450700 [TBL] [Abstract][Full Text] [Related]
16. Experimental Evaluation of Smartphone Accelerometer and Low-Cost Dual Frequency GNSS Sensors for Deformation Monitoring. Lăpădat AM; Tiberius CCJM; Teunissen PJG Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883950 [TBL] [Abstract][Full Text] [Related]
17. A Comparative Analysis of the Response of GNSS Receivers under Vertical and Horizontal L1/E1 Chirp Jamming. Pavlovčič-Prešeren P; Dimc F; Bažec M Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669604 [TBL] [Abstract][Full Text] [Related]
18. Single-Baseline RTK Positioning Using Dual-Frequency GNSS Receivers Inside Smartphones. Dabove P; Di Pietra V Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31590234 [TBL] [Abstract][Full Text] [Related]
19. Estimating and Comparing Dam Deformation Using Classical and GNSS Techniques. Barzaghi R; Cazzaniga NE; De Gaetani CI; Pinto L; Tornatore V Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29498650 [TBL] [Abstract][Full Text] [Related]
20. Behavior of Low-Cost Receivers in Base-Rover Configuration with Geodetic-Grade Antennas. Sanna G; Pisanu T; Garau S Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]