These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35009914)

  • 1. Haptic Feedback to Assist Blind People in Indoor Environment Using Vibration Patterns.
    Khusro S; Shah B; Khan I; Rahman S
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of sonification solutions in assistive systems for visually impaired people.
    Lăpușteanu A; Morar A; Moldoveanu A; Băluțoiu MA; Moldoveanu F
    Disabil Rehabil Assist Technol; 2024 Mar; ():1-16. PubMed ID: 38469665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Object Localization Assistive System Based on CV and Vibrotactile Encoding.
    Wei Z; Song A; Hu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2882-2885. PubMed ID: 36086052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating Wearable Haptics and Obstacle Avoidance for the Visually Impaired in Indoor Navigation: A User-Centered Approach.
    Barontini F; Catalano MG; Pallottino L; Leporini B; Bianchi M
    IEEE Trans Haptics; 2021; 14(1):109-122. PubMed ID: 32746372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Teleguidance-based remote navigation assistance for visually impaired and blind people-usability and user experience.
    Chaudary B; Pohjolainen S; Aziz S; Arhippainen L; Pulli P
    Virtual Real; 2023; 27(1):141-158. PubMed ID: 34054327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SwingBoard: introducing swipe based virtual keyboard for visually impaired and blind users.
    Ahmed I; Farrok O
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1482-1493. PubMed ID: 37098085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvements in the learnability of smartphone haptic interfaces for visually impaired users.
    González-Cañete FJ; López Rodríguez JL; Galdón PM; Díaz-Estrella A
    PLoS One; 2019; 14(11):e0225053. PubMed ID: 31710628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual environment navigation with look-around mode to explore new real spaces by people who are blind.
    Lahav O; Gedalevitz H; Battersby S; Brown D; Evett L; Merritt P
    Disabil Rehabil; 2018 May; 40(9):1072-1084. PubMed ID: 28637136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haptic-assistive technologies for audition and vision sensory disabilities.
    Sorgini F; Caliò R; Carrozza MC; Oddo CM
    Disabil Rehabil Assist Technol; 2018 May; 13(4):394-421. PubMed ID: 29017361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of Navigation Assistive Tools and Technologies for the Visually Impaired.
    Messaoudi MD; Menelas BJ; Mcheick H
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparative Study in Real-Time Scene Sonification for Visually Impaired People.
    Hu W; Wang K; Yang K; Cheng R; Ye Y; Sun L; Xu Z
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smartphone-based computer vision travelling aids for blind and visually impaired individuals: A systematic review.
    Budrionis A; Plikynas D; Daniušis P; Indrulionis A
    Assist Technol; 2022 Mar; 34(2):178-194. PubMed ID: 32207640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assistive technology-based solutions in learning mathematics for visually-impaired people: exploring issues, challenges and opportunities.
    Shoaib M; Fitzpatrick D; Pitt I
    Multimed Tools Appl; 2023; 82(29):46153-46184. PubMed ID: 38037570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ASSIST: Evaluating the usability and performance of an indoor navigation assistant for blind and visually impaired people.
    Nair V; Olmschenk G; Seiple WH; Zhu Z
    Assist Technol; 2022 May; 34(3):289-299. PubMed ID: 32790580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Vibrotactile Patterns Encoding Obstacle Distance Information.
    Kim Y; Harders M; Gassert R
    IEEE Trans Haptics; 2015; 8(3):298-305. PubMed ID: 25807569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An indoor navigation system for the visually impaired.
    Guerrero LA; Vasquez F; Ochoa SF
    Sensors (Basel); 2012; 12(6):8236-58. PubMed ID: 22969398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GLOS: GLOve for Speech Recognition.
    Giulia C; Chiara DV; Esmailbeigi H
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3319-3322. PubMed ID: 31946592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image Captioning for the Visually Impaired and Blind: A Recipe for Low-Resource Languages.
    Arystanbekov B; Kuzdeuov A; Nurgaliyev S; Varol HA
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning-Based Positioning of Visually Impaired People in Indoor Environments.
    Mahida P; Shahrestani S; Cheung H
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33142927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Human-Display Interface with Vibrotactile Feedback for Real-World Assistive Applications.
    Kim K; Jeong JH; Cho JH; Kim S; Kang J; Ryu J; Lee SW
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33467611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.