These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35009917)

  • 1. Time-Domain Joint Training Strategies of Speech Enhancement and Intent Classification Neural Models.
    Ali MN; Falavigna D; Brutti A
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. End-to-End Deep Convolutional Recurrent Models for Noise Robust Waveform Speech Enhancement.
    Ullah R; Wuttisittikulkij L; Chaudhary S; Parnianifard A; Shah S; Ibrar M; Wahab FE
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Step Joint Optimization with Auxiliary Loss Function for Noise-Robust Speech Recognition.
    Lee GW; Kim HK
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triple-0: Zero-shot denoising and dereverberation on an end-to-end frozen anechoic speech separation network.
    Gul S; Khan MS; Ur-Rehman A
    PLoS One; 2024; 19(7):e0301692. PubMed ID: 39012881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speech preprocessing and enhancement based on joint time domain and time-frequency domain analysis.
    Zhang W; Xie X; Du Y; Huang D
    J Acoust Soc Am; 2024 Jun; 155(6):3580-3588. PubMed ID: 38829156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Causal speech enhancement using dynamical-weighted loss and attention encoder-decoder recurrent neural network.
    Peracha FK; Khattak MI; Salem N; Saleem N
    PLoS One; 2023; 18(5):e0285629. PubMed ID: 37167227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speaker separation in realistic noise environments with applications to a cognitively-controlled hearing aid.
    Borgström BJ; Brandstein MS; Ciccarelli GA; Quatieri TF; Smalt CJ
    Neural Netw; 2021 Aug; 140():136-147. PubMed ID: 33765529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-stage Deep Learning for Noisy-reverberant Speech Enhancement.
    Zhao Y; Wang ZQ; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2019 Jan; 27(1):53-62. PubMed ID: 31106230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On training targets for deep learning approaches to clean speech magnitude spectrum estimation.
    Nicolson A; Paliwal KK
    J Acoust Soc Am; 2021 May; 149(5):3273. PubMed ID: 34241115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speech Enhancement by Multiple Propagation through the Same Neural Network.
    Grzywalski T; Drgas S
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Real-Time Convolutional Neural Network Based Speech Enhancement for Hearing Impaired Listeners Using Smartphone.
    Bhat GS; Shankar N; Reddy CKA; Panahi IMS
    IEEE Access; 2019; 7():78421-78433. PubMed ID: 32661495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of a priori signal-to-noise ratio using neurograms for speech enhancement.
    Jassim WA; Harte N
    J Acoust Soc Am; 2020 Jun; 147(6):3830. PubMed ID: 32611151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Audio-visual enhancement of speech in noise.
    Girin L; Schwartz JL; Feng G
    J Acoust Soc Am; 2001 Jun; 109(6):3007-20. PubMed ID: 11425143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Acoustic Feature Enhancement for Speech Emotion Recognition With Noisy Speech.
    Leem SG; Fulford D; Onnela JP; Gard D; Busso C
    IEEE/ACM Trans Audio Speech Lang Process; 2024; 32():917-929. PubMed ID: 39015743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning-Based Speech Enhancement With a Loss Trading Off the Speech Distortion and the Noise Residue for Cochlear Implants.
    Kang Y; Zheng N; Meng Q
    Front Med (Lausanne); 2021; 8():740123. PubMed ID: 34820392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural Cascade Architecture with Triple-domain Loss for Speech Enhancement.
    Wang H; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2022; 30():734-743. PubMed ID: 36161036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards real-world objective speech quality and intelligibility assessment using speech-enhancement residuals and convolutional long short-term memory networks.
    Dong X; Williamson DS
    J Acoust Soc Am; 2020 Nov; 148(5):3348. PubMed ID: 33261399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale training to increase speech intelligibility for hearing-impaired listeners in novel noises.
    Chen J; Wang Y; Yoho SE; Wang D; Healy EW
    J Acoust Soc Am; 2016 May; 139(5):2604. PubMed ID: 27250154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attention-Based Joint Training of Noise Suppression and Sound Event Detection for Noise-Robust Classification.
    Son JY; Chang JH
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic speech recognition using a predictive echo state network classifier.
    Skowronski MD; Harris JG
    Neural Netw; 2007 Apr; 20(3):414-23. PubMed ID: 17556115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.