These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35009944)

  • 1. Motion Capture Sensor-Based Emotion Recognition Using a Bi-Modular Sequential Neural Network.
    Bhatia Y; Bari AH; Hsu GJ; Gavrilova M
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KinectGaitNet: Kinect-Based Gait Recognition Using Deep Convolutional Neural Network.
    Bari ASMH; Gavrilova ML
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LEMON: A Lightweight Facial Emotion Recognition System for Assistive Robotics Based on Dilated Residual Convolutional Neural Networks.
    Devaram RR; Beraldo G; De Benedictis R; Mongiovì M; Cesta A
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusion-ConvBERT: Parallel Convolution and BERT Fusion for Speech Emotion Recognition.
    Lee S; Han DK; Ko H
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33238396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Feature Selection Algorithm on Speech Emotion Recognition Using Deep Convolutional Neural Network.
    Farooq M; Hussain F; Baloch NK; Raja FR; Yu H; Zikria YB
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG-Based Emotion Recognition with Similarity Learning Network.
    Wang Y; Qiu S; Li J; Ma X; Liang Z; Li H; He H
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1209-1212. PubMed ID: 31946110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on Chinese Speech Emotion Recognition Based on Deep Neural Network and Acoustic Features.
    Lee MC; Yeh SC; Chang JW; Chen ZY
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multimodal convolutional neuro-fuzzy network for emotion understanding of movie clips.
    Nguyen TL; Kavuri S; Lee M
    Neural Netw; 2019 Oct; 118():208-219. PubMed ID: 31299625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion.
    Dehzangi O; Taherisadr M; ChangalVala R
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition.
    Rouhafzay G; Cretu AM; Payeur P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Spatiotemporal Deep Learning Approach for Automatic Pathological Gait Classification.
    Albuquerque P; Verlekar TT; Correia PL; Soares LD
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Modal Residual Perceptron Network for Audio-Video Emotion Recognition.
    Chang X; Skarbek W
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Recurrent Neural Network Architecture-Based Intention Recognition for Human-Robot Collaboration.
    Gao X; Yan L; Wang G; Gerada C
    IEEE Trans Cybern; 2023 Mar; 53(3):1578-1586. PubMed ID: 34637387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-Subject and Cross-Modal Transfer for Generalized Abnormal Gait Pattern Recognition.
    Gu X; Guo Y; Deligianni F; Lo B; Yang GZ
    IEEE Trans Neural Netw Learn Syst; 2021 Feb; 32(2):546-560. PubMed ID: 32726285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emotion and motion: Toward emotion recognition based on standing and walking.
    Riemer H; Joseph JV; Lee AY; Riemer R
    PLoS One; 2023; 18(9):e0290564. PubMed ID: 37703239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel dataset and deep learning-based approach for marker-less motion capture during gait.
    Vafadar S; Skalli W; Bonnet-Lebrun A; Khalifé M; Renaudin M; Hamza A; Gajny L
    Gait Posture; 2021 May; 86():70-76. PubMed ID: 33711613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Synthesized IMU Data to Train a Long-Short Term Memory-based Neural Network for Unobtrusive Gait Analysis with a Sparse Sensor Setup.
    Lueken M; Wenner J; Leonhardt S; Ngo C
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3653-3656. PubMed ID: 36086654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emotion Recognition Based on EEG Using Generative Adversarial Nets and Convolutional Neural Network.
    Pan B; Zheng W
    Comput Math Methods Med; 2021; 2021():2520394. PubMed ID: 34671415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.