These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 3500996)

  • 1. Physiological features of the opercularis muscle and their effects on vibration sensitivity in the bullfrog Rana catesbeiana.
    Hetherington TE
    J Exp Biol; 1987 Sep; 131():189-204. PubMed ID: 3500996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the opercularis muscle in seismic sensitivity in the bullfrog Rana catesbeiana.
    Hetherington TE
    J Exp Zool; 1985 Jul; 235(1):27-34. PubMed ID: 3877143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanics of vibration reception in the bullfrog, Rana catesbeiana.
    Hetherington TE
    J Comp Physiol A; 1988 May; 163(1):43-52. PubMed ID: 3260282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromyography of the opercularis muscle of Rana catesbeiana: an amphibian tonic muscle.
    Hetherington TE; Lombard RE
    J Morphol; 1983 Jan; 175(1):17-26. PubMed ID: 6601723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana II. The operculum.
    Mason MJ; Narins PM
    J Exp Biol; 2002 Oct; 205(Pt 20):3167-76. PubMed ID: 12235196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative morphology of the amphibian opercularis system: I. General design features and functional interpretation.
    Hetherington TE; Jaslow AP; Lombard RE
    J Morphol; 1986 Oct; 190(1):43-61. PubMed ID: 3783718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow-to-fast transformation of denervated soleus muscles by chronic high-frequency stimulation in the rat.
    Gorza L; Gundersen K; Lømo T; Schiaffino S; Westgaard RH
    J Physiol; 1988 Aug; 402():627-49. PubMed ID: 3236251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The middle ear muscle of frogs does not modulate tympanic responses to sound.
    Hetherington TE
    J Acoust Soc Am; 1994 Apr; 95(4):2122-5. PubMed ID: 8201108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of frequency in the effects of long-term intermittent stimulation of denervated slow-twitch muscle in the rat.
    Al-Amood WS; Lewis DM
    J Physiol; 1987 Nov; 392():377-95. PubMed ID: 3446785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of toad slow muscle attributed to non-uniform sarcomere lengths.
    Morgan DL; Proske U
    J Physiol; 1984 Apr; 349():107-17. PubMed ID: 6429317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle stiffness changes during isometric contraction in frog skeletal muscle as studied by the use of ultrasonic waves.
    Hatta I; Tamura Y; Matsuda T; Sugi H; Tsuchiya T
    Adv Exp Med Biol; 1984; 170():673-86. PubMed ID: 6611039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relative sensitivity to vibration of muscle receptors of the cat.
    Brown MC; Engberg I; Matthews PB
    J Physiol; 1967 Oct; 192(3):773-800. PubMed ID: 4293790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria.
    Ferenczi MA; Goldman YE; Simmons RM
    J Physiol; 1984 May; 350():519-43. PubMed ID: 6611405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The force-velocity relation of isolated twitch and slow muscle fibres of Xenopus laevis.
    Lännergren J
    J Physiol; 1978 Oct; 283():501-21. PubMed ID: 722588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The responses of frog muscle spindles and fast and slow muscle fibres to a variety of mechanical inputs.
    Brown MC
    J Physiol; 1971 Oct; 218(1):1-17. PubMed ID: 4257030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contractile responses to direct stimulation of frog slow muscle fibres before and after denervation.
    Lehmann N; Schmidt H
    Pflugers Arch; 1979 Oct; 382(1):43-50. PubMed ID: 316518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Greater hydrogen ion-induced depression of tension and velocity in skinned single fibres of rat fast than slow muscles.
    Metzger JM; Moss RL
    J Physiol; 1987 Dec; 393():727-42. PubMed ID: 3446809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical factors in the initiation of eccentric contraction-induced injury in rat soleus muscle.
    Warren GL; Hayes DA; Lowe DA; Armstrong RB
    J Physiol; 1993 May; 464():457-75. PubMed ID: 8229813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of temperature and Zn2+ on isometric contractile properties and electrical phenomena of frog (Rana) and Xenopus skeletal muscle fibers.
    Oba T; Takagi Y; Hotta K
    Can J Physiol Pharmacol; 1984 Dec; 62(12):1511-7. PubMed ID: 6335672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.