These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35009963)

  • 1. Nanostructured Molybdenum-Oxide Anodes for Lithium-Ion Batteries: An Outstanding Increase in Capacity.
    Wang H; Li T; Hashem AM; Abdel-Ghany AE; El-Tawil RS; Abuzeid HM; Coughlin A; Chang K; Zhang S; El-Mounayri H; Tovar A; Zhu L; Julien CM
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35009963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Reversible Lithium-ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithium-ion Batteries.
    Liu X; Yang J; Hou W; Wang J; Nuli Y
    ChemSusChem; 2015 Aug; 8(16):2621-4. PubMed ID: 26183572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust hetero-MoO
    Gao P; Ru Q; Pan Z; Zhang J; Xu W; Chi-Chung Ling F; Wei L
    J Colloid Interface Sci; 2021 Oct; 599():730-740. PubMed ID: 33984765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Capacity MoO2/Graphite Oxide Composite Anode for Lithium-Ion Batteries.
    Xu Y; Yi R; Yuan B; Wu X; Dunwell M; Lin Q; Fei L; Deng S; Andersen P; Wang D; Luo H
    J Phys Chem Lett; 2012 Feb; 3(3):309-14. PubMed ID: 26285844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crumpled graphene-molybdenum oxide composite powders: preparation and application in lithium-ion batteries.
    Choi SH; Kang YC
    ChemSusChem; 2014 Feb; 7(2):523-8. PubMed ID: 24243867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesizing High-Capacity Oxyfluoride Conversion Anodes by Direct Fluorination of Molybdenum Dioxide (MoO
    Thapaliya BP; Self EC; Jafta CJ; Borisevich AY; Meyer HM; Bridges CA; Nanda J; Dai S
    ChemSusChem; 2020 Aug; 13(15):3825-3834. PubMed ID: 32460419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron-rich hybrid matrix to enhance molybdenum oxide-based anode performance for Lithium-Ion batteries.
    Ko J; Kim M; So S; Tae Kim I; Hur J
    J Colloid Interface Sci; 2023 Oct; 647():93-103. PubMed ID: 37245273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micrometer-Sized, Dual-Conductive MoO
    Li R; Dong W; Pan J; Huang F
    Small Methods; 2021 Nov; 5(11):e2100765. PubMed ID: 34927962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3D MoO
    Herdt T; Bruns M; Schneider JJ
    Dalton Trans; 2018 Oct; 47(42):14897-14907. PubMed ID: 30019045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Dimensional Cr-Doped MoO
    Lu H; Yang C; Li C; Wang L; Wang H
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13405-13415. PubMed ID: 30893996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of electrospun molybdenum dioxide-carbon nanofibers as sulfur matrix additives for rechargeable lithium-sulfur battery applications.
    Zhuang R; Yao S; Jing M; Shen X; Xiang J; Li T; Xiao K; Qin S
    Beilstein J Nanotechnol; 2018; 9():262-270. PubMed ID: 29441271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agaric-like anodes of porous carbon decorated with MoO
    Hou C; Yang W; Xie X; Sun X; Wang J; Naik N; Pan D; Mai X; Guo Z; Dang F; Du W
    J Colloid Interface Sci; 2021 Aug; 596():396-407. PubMed ID: 33848745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterostructure Manipulation via in Situ Localized Phase Transformation for High-Rate and Highly Durable Lithium Ion Storage.
    Hao J; Zhang J; Xia G; Liu Y; Zheng Y; Zhang W; Tang Y; Pang WK; Guo Z
    ACS Nano; 2018 Oct; 12(10):10430-10438. PubMed ID: 30253087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic insights into the phenomena of increasing capacity with cycle number: using pulsed-laser deposited MoO
    Fenech M; Lim S; Cheung J; Sharma N
    Phys Chem Chem Phys; 2019 Nov; 21(46):25779-25787. PubMed ID: 31724681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional nitrogen and sulfur co-doped holey-reduced graphene oxide frameworks anchored with MoO
    Pei J; Geng H; Ang H; Zhang L; Wei H; Cao X; Zheng J; Gu H
    Nanotechnology; 2018 Jul; 29(29):295404. PubMed ID: 29695646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intercalation anode material for lithium ion battery based on molybdenum dioxide.
    Sen UK; Shaligram A; Mitra S
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14311-9. PubMed ID: 25062365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exfoliated Graphene Oxide/MoO2 Composites as Anode Materials in Lithium-Ion Batteries: An Insight into Intercalation of Li and Conversion Mechanism of MoO2.
    Petnikota S; Teo KW; Chen L; Sim A; Marka SK; Reddy MV; Srikanth VV; Adams S; Chowdari BV
    ACS Appl Mater Interfaces; 2016 May; 8(17):10884-96. PubMed ID: 27057928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-dimensional architecture with reduced graphene oxide supporting ultrathin MoO
    Feng Y; Liu H
    Nanotechnology; 2019 Aug; 30(31):315602. PubMed ID: 30991376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile preparation of MoO
    Guo Y; Xia Q; Chang Y; Wang L; Zhou A
    Nanotechnology; 2024 Jan; 35(16):. PubMed ID: 38176069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-activated Conversion Reaction of MoO
    Jang J; Ku JH; Oh SM; Yoon T
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9814-9819. PubMed ID: 33587598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.