These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35009977)

  • 41. Bio-Phenolic Resin Derived Porous Carbon Materials for High-Performance Lithium-Ion Capacitor.
    Cho EC; Chang-Jian CW; Lu CZ; Huang JH; Hsieh TH; Wu NJ; Lee KC; Hsu SC; Weng HC
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160564
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rice Hull-Derived Carbon for Supercapacitors: Towards Sustainable Silicon-Carbon Supercapacitors.
    Li C; Chen H; Zhang L; Jiao S; Zhang H; Zhang J; Li P; Tao Y; Zhao X
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34961014
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ionic Liquid Mixture Electrolyte Matching Porous Carbon Electrodes for Supercapacitors.
    Zhao Y; Chen Y; Du Q; Zhuo K; Yang L; Sun D; Bai G
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295465
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Facile method to produce sub-1 nm pore-rich carbon from biomass wastes for high performance supercapacitors.
    Jiang Y; Chen J; Zeng Q; Zou Z; Li J; Zeng L; Sun W; Ming Li C
    J Colloid Interface Sci; 2022 Apr; 612():213-222. PubMed ID: 34992021
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heteroatom-doped hierarchical porous carbon aerogels from chitosan for high performance supercapacitors.
    Wu Q; Hu J; Cao S; Yu S; Huang L
    Int J Biol Macromol; 2020 Jul; 155():131-141. PubMed ID: 32224186
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Template-Directing Coupled with Chemical Activation Methodology-Derived Hexagon-like Porous Carbon Electrode with Outstanding Compatibility to Electrolytes and Low-Temperature Performance.
    Cao Y; Li S; Yang Z; Wu M; Wang X; Xu C; Zhang X; Lin R; Ma X; Huang G; Lu C; Gao J
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8206-8218. PubMed ID: 33576615
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatial Confinement Strategy for Micelle-Size-Mediated Modulation of Mesopores in Hierarchical Porous Carbon Nanosheets with an Efficient Capacitive Response.
    Qin Y; Miao L; Mansuer M; Hu C; Lv Y; Gan L; Liu M
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35830692
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The preparation of porous carbon materials derived from bio-protic ionic liquid with application in flexible solid-state supercapacitors.
    Zhou H; Wu S; Wang H; Li Y; Liu X; Zhou Y
    J Hazard Mater; 2021 Jan; 402():124023. PubMed ID: 33254832
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-performance asymmetric supercapacitor based on hierarchical nanocomposites of polyaniline nanoarrays on graphene oxide and its derived N-doped carbon nanoarrays grown on graphene sheets.
    Tabrizi AG; Arsalani N; Mohammadi A; Ghadimi LS; Ahadzadeh I
    J Colloid Interface Sci; 2018 Dec; 531():369-381. PubMed ID: 30041114
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biological pretreatment with white rot fungi for preparing hierarchical porous carbon from Banlangen residues with high performance for supercapacitors and dye adsorption.
    Kong W; Zhang X; Fu X; Zhou C; Fan L; Zhang W
    Front Microbiol; 2024; 15():1374974. PubMed ID: 38873140
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel and facile synthesis approach for a porous carbon/graphene composite for high-performance supercapacitors.
    Liu T; Zhang X; Liu K; Liu Y; Liu M; Wu W; Gu Y; Zhang R
    Nanotechnology; 2018 Mar; 29(9):095401. PubMed ID: 29300179
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of Mesoporous Carbons from Rice Husk for Supercapacitors with High Energy Density in Ionic Liquid Electrolytes.
    He X; Zhang H; Xie K; Xia Y; Zhao Z; Wang X
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2841-6. PubMed ID: 27455718
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Converting Corncob to Activated Porous Carbon for Supercapacitor Application.
    Yang S; Zhang K
    Nanomaterials (Basel); 2018 Mar; 8(4):. PubMed ID: 29561807
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrolyte-Dependent Supercapacitor Performance on Nitrogen-Doped Porous Bio-Carbon from Gelatin.
    Deng J; Li J; Song S; Zhou Y; Li L
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32085553
    [TBL] [Abstract][Full Text] [Related]  

  • 55. N, S, O Self-Doped Porous Carbon Nanoarchitectonics Derived from Pinecone with Outstanding Supercapacitance Performances.
    Zhang D; Xue Y; Chen J; Guo X; Yang D; Wang J; Zhang J; Zhang F; Yuan A
    J Nanosci Nanotechnol; 2020 May; 20(5):2728-2735. PubMed ID: 31635608
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A High-Performance Structural Supercapacitor.
    Reece R; Lekakou C; Smith PA
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25683-25692. PubMed ID: 32407618
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In-Built Fabrication of MOF Assimilated Porous Hollow Carbon from Pre-Hydrolysate for Supercapacitor.
    Zhao X; Li C; Sha L; Yang K; Gao M; Chen H; Jiang J
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015634
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation of Hierarchical Porous Activated Carbon from Banana Leaves for High-performance Supercapacitor: Effect of Type of Electrolytes on Performance.
    Roy CK; Shah SS; Reaz AH; Sultana S; Chowdhury AN; Firoz SH; Zahir MH; Ahmed Qasem MA; Aziz MA
    Chem Asian J; 2021 Feb; 16(4):296-308. PubMed ID: 33237636
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intertwined carbon networks derived from Polyimide/Cellulose composite as porous electrode for symmetrical supercapacitor.
    Li H; Cao L; Zhang H; Tian Z; Zhang Q; Yang F; Yang H; He S; Jiang S
    J Colloid Interface Sci; 2022 Mar; 609():179-187. PubMed ID: 34894552
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultrathin Hierarchical Porous Carbon Nanosheets for High-Performance Supercapacitors and Redox Electrolyte Energy Storage.
    Jayaramulu K; Dubal DP; Nagar B; Ranc V; Tomanec O; Petr M; Datta KKR; Zboril R; Gómez-Romero P; Fischer RA
    Adv Mater; 2018 Apr; 30(15):e1705789. PubMed ID: 29516561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.