These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 35009994)

  • 21. Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.
    Tsuchiya H; Tenjimbayashi M; Moriya T; Yoshikawa R; Sasaki K; Togasawa R; Yamazaki T; Manabe K; Shiratori S
    Langmuir; 2017 Sep; 33(36):8950-8960. PubMed ID: 28826213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces.
    Li XM; Reinhoudt D; Crego-Calama M
    Chem Soc Rev; 2007 Aug; 36(8):1350-68. PubMed ID: 17619692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity.
    Bhushan B
    Beilstein J Nanotechnol; 2011; 2():66-84. PubMed ID: 21977417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-healing system of superhydrophobic surfaces inspired from and beyond nature.
    Li Z; Guo Z
    Nanoscale; 2023 Jan; 15(4):1493-1512. PubMed ID: 36601906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advances in micro and nanoengineered surfaces for enhancing boiling and condensation heat transfer: a review.
    Upot NV; Fazle Rabbi K; Khodakarami S; Ho JY; Kohler Mendizabal J; Miljkovic N
    Nanoscale Adv; 2023 Feb; 5(5):1232-1270. PubMed ID: 36866258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Armored Superhydrophobic Surfaces with Excellent Drag Reduction in Complex Environmental Conditions.
    Wang Z; Liu X; Guo Y; Tong B; Zhang G; Liu K; Jiao Y
    Langmuir; 2024 Feb; ():. PubMed ID: 38335533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enabling Highly Effective Boiling from Superhydrophobic Surfaces.
    Allred TP; Weibel JA; Garimella SV
    Phys Rev Lett; 2018 Apr; 120(17):174501. PubMed ID: 29756846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention.
    Ditsche-Kuru P; Schneider ES; Melskotte JE; Brede M; Leder A; Barthlott W
    Beilstein J Nanotechnol; 2011; 2():137-44. PubMed ID: 21977425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biphilic Surfaces with Optimum Hydrophobic Islands on a Superhydrophobic Background for Dropwise Flow Condensation.
    Chehrghani MM; Abbasiasl T; Sadaghiani AK; Koşar A
    Langmuir; 2021 Nov; 37(46):13567-13575. PubMed ID: 34751032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling of Shear Flows over Superhydrophobic Surfaces: From Newtonian to Non-Newtonian Fluids.
    Rahmani H; Larachi F; Taghavi SM
    ACS Eng Au; 2024 Apr; 4(2):166-192. PubMed ID: 38646519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flow Boiling Heat Transfer Enhancement Using Tuned Geometrical Contact-Line Pinning.
    Salmean C; Qiu H
    ACS Appl Mater Interfaces; 2023 May; 15(19):23844-23859. PubMed ID: 37130321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laser-Engineered Microcavity Surfaces with a Nanoscale Superhydrophobic Coating for Extreme Boiling Performance.
    Može M; Senegačnik M; Gregorčič P; Hočevar M; Zupančič M; Golobič I
    ACS Appl Mater Interfaces; 2020 May; 12(21):24419-24431. PubMed ID: 32352743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward understanding whether superhydrophobic surfaces can really decrease fluidic friction drag.
    Su B; Li M; Lu Q
    Langmuir; 2010 Apr; 26(8):6048-52. PubMed ID: 20000363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioinspired functional SLIPSs and wettability gradient surfaces and their synergistic cooperation and opportunities for enhanced condensate and fluid transport.
    Lv F; Zhao F; Cheng D; Dong Z; Jia H; Xiao X; Orejon D
    Adv Colloid Interface Sci; 2022 Jan; 299():102564. PubMed ID: 34861513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Condensation Heat-Transfer Performance of Thermally Stable Superhydrophobic Cerium-Oxide Surfaces.
    Shim J; Seo D; Oh S; Lee J; Nam Y
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31765-31776. PubMed ID: 30136846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Underwater drag-reducing effect of superhydrophobic submarine model.
    Zhang S; Ouyang X; Li J; Gao S; Han S; Liu L; Wei H
    Langmuir; 2015; 31(1):587-93. PubMed ID: 25496725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How to Achieve a Monostable Cassie State on a Micropillar-Arrayed Superhydrophobic Surface.
    Huang L; Yao Y; Peng Z; Zhang B; Chen S
    J Phys Chem B; 2021 Jan; 125(3):883-894. PubMed ID: 33459010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of Dropwise Condensation Heat Transfer on Laser-Ablated Superhydrophobic/Hydrophilic Hybrid Copper Surfaces.
    Song Z; Lu M; Chen X
    ACS Omega; 2020 Sep; 5(37):23588-23595. PubMed ID: 32984678
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces.
    Zheng SF; Gross U; Wang XD
    Adv Colloid Interface Sci; 2021 Sep; 295():102503. PubMed ID: 34411880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioinspired Cavity Regulation on Superhydrophobic Spheres for Drag Reduction in an Aqueous Medium.
    Yao C; Zhang J; Xue Z; Yu K; Yu X; Yang X; Qu Q; Gan W; Wang J; Jiang L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4796-4803. PubMed ID: 33448779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.