These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35010121)

  • 1. Facile Synthesis of Silver Nanoparticles and Preparation of Conductive Ink.
    Hong GB; Luo YH; Chuang KJ; Cheng HY; Chang KC; Ma CM
    Nanomaterials (Basel); 2022 Jan; 12(1):. PubMed ID: 35010121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparing and Applying Silver Nanoparticles in Conductive Ink and Inkjet Painting.
    Bing Hong G; Hua Luo Y; Jen Chuang K; Ming Ma C
    J Nanosci Nanotechnol; 2021 Dec; 21(12):5979-5986. PubMed ID: 34229794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparing Copper Nanoparticles and Flexible Copper Conductive Sheets.
    Hong GB; Wang JF; Chuang KJ; Cheng HY; Chang KC; Ma CM
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Preparation of Ag Nanoparticle and Ink Used for Inkjet Printing of Paper Based Conductive Patterns.
    Cao L; Bai X; Lin Z; Zhang P; Deng S; Du X; Li W
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28846637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-Silver Ink of High Conductivity and Low Sintering Temperature for Paper Electronics.
    Mo L; Guo Z; Wang Z; Yang L; Fang Y; Xin Z; Li X; Chen Y; Cao M; Zhang Q; Li L
    Nanoscale Res Lett; 2019 Jun; 14(1):197. PubMed ID: 31172304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparing of Highly Conductive Patterns on Flexible Substrates by Screen Printing of Silver Nanoparticles with Different Size Distribution.
    Ding J; Liu J; Tian Q; Wu Z; Yao W; Dai Z; Liu L; Wu W
    Nanoscale Res Lett; 2016 Dec; 11(1):412. PubMed ID: 27644238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of silver nanoparticles for use in conductive inks by chemical reduction method.
    Naderi-Samani E; Razavi RS; Nekouee K; Naderi-Samani H
    Heliyon; 2023 Oct; 9(10):e20548. PubMed ID: 37822640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductivity enhancement of Ag nanowire ink by decorating
    Feng J; Xing B; Xu J
    Nanotechnology; 2024 Feb; 35(17):. PubMed ID: 38262038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver Shell Thickness-Dependent Conductivity of Coatings Based on Ni@Ag Core@shell Nanoparticles.
    Pajor-Świerzy A; Kozak K; Duraczyńska D; Wiertel-Pochopień A; Zawała J; Szczepanowicz K
    Nanotechnol Sci Appl; 2023; 16():73-84. PubMed ID: 38161487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile and Scalable Preparation of Solid Silver Nanoparticles (<10 nm) for Flexible Electronics.
    Tai YL; Yang ZG
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17104-11. PubMed ID: 26133543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The exothermic reaction route of a self-heatable conductive ink for rapid processable printed electronics.
    Shin DY; Han JW; Chun S
    Nanoscale; 2014 Jan; 6(1):630-7. PubMed ID: 24253416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replacement reaction-assisted synthesis of silver nanoparticles by jet for conductive ink.
    Murtaza M; Hussain N; Sen L; Wu H
    Nanotechnology; 2020 Mar; 31(11):115301. PubMed ID: 31791036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid state synthesis of starch-capped silver nanoparticles.
    Hebeish A; Shaheen TI; El-Naggar ME
    Int J Biol Macromol; 2016 Jun; 87():70-6. PubMed ID: 26902893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano oxide intermediate layer assisted room temperature sintering of ink-jet printed silver nanoparticles pattern.
    Liu Z; Ji H; Yuan Q; Ma X; Feng H; Zhao W; Wei J; Xu C; Li M
    Nanotechnology; 2019 Dec; 30(49):495302. PubMed ID: 31480026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric study on conductive patterns by low-temperature sintering of micron silver ink.
    Zhao M; Tang G; Yang S; Fu S
    RSC Adv; 2023 Mar; 13(13):8636-8645. PubMed ID: 36936824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of
    Otunola GA; Afolayan AJ; Ajayi EO; Odeyemi SW
    Pharmacogn Mag; 2017 Jul; 13(Suppl 2):S201-S208. PubMed ID: 28808381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Synthesis of Functional Silane-Based Silicone Resin and Application in Low-Temperature Curing Silver Conductive Inks.
    Tang Z; Liu Y; Zhang Y; Sun Z; Huang W; Chen Z; Jiang X; Zhao L
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36986031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Morphology on the Electrical Resistivity of Silver Nanostructure Films.
    Stewart IE; Kim MJ; Wiley BJ
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1870-1876. PubMed ID: 27981831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of low temperature Sn nanoparticles for the fabrication of highly conductive ink.
    Jo YH; Jung I; Choi CS; Kim I; Lee HM
    Nanotechnology; 2011 Jun; 22(22):225701. PubMed ID: 21454937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile coconut inflorescence sap mediated synthesis of silver nanoparticles and its diverse antimicrobial and cytotoxic properties.
    M K R; K S M; Nair SS; B Krishna K; T M S; K P S; K S; H S; T S Keshava P; Neeli C; Karunasagar I; K B H; Karun A
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110834. PubMed ID: 32279817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.