These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 35010133)
61. A review of synthesis of esters with aromatic, emulsifying, and lubricant properties by biotransformation using lipases. Vilas Bôas RN; de Castro HF Biotechnol Bioeng; 2022 Mar; 119(3):725-742. PubMed ID: 34958126 [TBL] [Abstract][Full Text] [Related]
62. Isolation of Fatty Acids from the Enzymatic Hydrolysis of Capsaicinoids and Their Use in Enzymatic Acidolysis of Coconut Oil. Kanprakobkit W; Wichai U; Bunyapraphatsara N; Kielar F J Oleo Sci; 2023 Dec; 72(12):1097-1111. PubMed ID: 37989304 [TBL] [Abstract][Full Text] [Related]
63. Solvent-free enzymatic preparation of feruloylated monoacylglycerols optimized by response surface methodology. Sun SD; Shan L; Liu YF; Jin QZ; Zhang LX; Wang XG J Agric Food Chem; 2008 Jan; 56(2):442-7. PubMed ID: 18092748 [TBL] [Abstract][Full Text] [Related]
64. Immobilized phospholipase A1-catalyzed modification of phosphatidylcholine with n-3 polyunsaturated fatty acid. Zhao T; No da S; Kim BH; Garcia HS; Kim Y; Kim IH Food Chem; 2014 Aug; 157():132-40. PubMed ID: 24679762 [TBL] [Abstract][Full Text] [Related]
65. Fungal lipases as biocatalysts: A promising platform in several industrial biotechnology applications. Mahfoudhi A; Benmabrouk S; Fendri A; Sayari A Biotechnol Bioeng; 2022 Dec; 119(12):3370-3392. PubMed ID: 36137755 [TBL] [Abstract][Full Text] [Related]
66. Optimization of ultrasound-accelerated synthesis of enzymatic octyl hydroxyphenylpropionate by response surface methodology. Lee CC; Chen HC; Ju HY; Liu YC; Chen JH; Shie SY; Chang C; Shieh CJ Biotechnol Prog; 2010; 26(6):1629-34. PubMed ID: 20939090 [TBL] [Abstract][Full Text] [Related]
67. Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study. Chen HC; Ju HY; Wu TT; Liu YC; Lee CC; Chang C; Chung YL; Shieh CJ J Biomed Biotechnol; 2011; 2011():. PubMed ID: 20936129 [TBL] [Abstract][Full Text] [Related]
68. High oleic enhancement of palm olein via enzymatic interesterification. Lin SW; Huey SM J Oleo Sci; 2009; 58(11):549-55. PubMed ID: 19844069 [TBL] [Abstract][Full Text] [Related]
69. Transesterification of phosphatidylcholine in sn-1 position through direct use of lipase-producing Rhizopus oryzae cells as whole-cell biocatalyst. Hama S; Miura K; Yoshida A; Noda H; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2011 Jun; 90(5):1731-8. PubMed ID: 21468705 [TBL] [Abstract][Full Text] [Related]
70. Optimization of lipase-catalyzed enantioselective production of 1-phenyl 1-propanol using response surface methodology. Soyer A; Bayraktar E; Mehmetoglu U Prep Biochem Biotechnol; 2010; 40(4):389-404. PubMed ID: 21108142 [TBL] [Abstract][Full Text] [Related]
71. Lipase-catalyzed hydrolysis of linseed oil: optimization using response surface methodology. Chen W; Sun S; Liang S; Peng L; Wang Y; Shen M J Oleo Sci; 2014; 63(6):619-28. PubMed ID: 24829129 [TBL] [Abstract][Full Text] [Related]
72. Optimization of n-Hexane-Acetone System for Extraction of Phosphatidylcholine and Phosphatidylethanolamine by Response Surface Methodology. Huang C; Cao D J Oleo Sci; 2022 Jun; 71(6):813-822. PubMed ID: 35584957 [TBL] [Abstract][Full Text] [Related]
73. Synthesis with Immobilized Lipases and Downstream Processing of Ascorbyl Palmitate. Tufiño C; Bernal C; Ottone C; Romero O; Illanes A; Wilson L Molecules; 2019 Sep; 24(18):. PubMed ID: 31491845 [TBL] [Abstract][Full Text] [Related]
74. Characterization and optimization of phospholipase A2 catalyzed synthesis of phosphatidylcholine. Egger D; Wehtje E; Adlercreutz P Biochim Biophys Acta; 1997 Nov; 1343(1):76-84. PubMed ID: 9428661 [TBL] [Abstract][Full Text] [Related]
75. Enzymatic Synthesis of Structured Monogalactosyldiacylglycerols Enriched in Pinolenic Acid. Kim J; Chung MY; Choi HD; Choi IW; Kim BH J Agric Food Chem; 2018 Aug; 66(30):8079-8085. PubMed ID: 29998729 [TBL] [Abstract][Full Text] [Related]
76. Production of low-calorie structured lipids from spent coffee grounds or olive pomace crude oils catalyzed by immobilized lipase in magnetic nanoparticles. Mota DA; Rajan D; Heinzl GC; Osório NM; Gominho J; Krause LC; Soares CMF; Nampoothiri KM; Sukumaran RK; Ferreira-Dias S Bioresour Technol; 2020 Jul; 307():123223. PubMed ID: 32220818 [TBL] [Abstract][Full Text] [Related]
77. Kinetics and Optimization of Lipophilic Kojic Acid Derivative Synthesis in Polar Aprotic Solvent Using Lipozyme RMIM and Its Rheological Study. Ishak N; Lajis AFB; Mohamad R; Ariff AB; Mohamed MS; Halim M; Wasoh H Molecules; 2018 Feb; 23(2):. PubMed ID: 29495254 [TBL] [Abstract][Full Text] [Related]
78. Improving fatty acid methyl ester production yield in a lipase-catalyzed process using waste frying oils as feedstock. Azócar L; Ciudad G; Heipieper HJ; Muñoz R; Navia R J Biosci Bioeng; 2010 Jun; 109(6):609-14. PubMed ID: 20471601 [TBL] [Abstract][Full Text] [Related]
79. Lipase-catalyzed incorporation of different Fatty acids into tripalmitin-enriched triacylglycerols: effect of reaction parameters. Qin XL; Yang B; Huang HH; Wang YH J Agric Food Chem; 2012 Mar; 60(9):2377-84. PubMed ID: 22360498 [TBL] [Abstract][Full Text] [Related]
80. Kinetic aspects of ultrasound-accelerated lipase catalyzed acetylation and optimal synthesis of 4'-acetoxyresveratrol. Kuo CH; Hsiao FW; Chen JH; Hsieh CW; Liu YC; Shieh CJ Ultrason Sonochem; 2013 Jan; 20(1):546-52. PubMed ID: 22698950 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]