BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35011214)

  • 1. Using Live and Video Stimuli to Localize Face and Object Processing Regions of the Canine Brain.
    Gillette KD; Phillips EM; Dilks DD; Berns GS
    Animals (Basel); 2022 Jan; 12(1):. PubMed ID: 35011214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A functional dissociation of face-, body- and scene-selective brain areas based on their response to moving and static stimuli.
    Pitcher D; Ianni G; Ungerleider LG
    Sci Rep; 2019 Jun; 9(1):8242. PubMed ID: 31160680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Face of It: No Differential Sensitivity to Internal Facial Features in the Dog Brain.
    Szabó D; Gábor A; Gácsi M; Faragó T; Kubinyi E; Miklósi Á; Andics A
    Front Behav Neurosci; 2020; 14():25. PubMed ID: 32194382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2D or not 2D? An fMRI study of how dogs visually process objects.
    Prichard A; Chhibber R; Athanassiades K; Chiu V; Spivak M; Berns GS
    Anim Cogn; 2021 Sep; 24(5):1143-1151. PubMed ID: 33772693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces.
    Cuaya LV; Hernández-Pérez R; Concha L
    PLoS One; 2016; 11(3):e0149431. PubMed ID: 26934715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Superior Temporal Sulcus Is Causally Connected to the Amygdala: A Combined TBS-fMRI Study.
    Pitcher D; Japee S; Rauth L; Ungerleider LG
    J Neurosci; 2017 Feb; 37(5):1156-1161. PubMed ID: 28011742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study.
    Pinsk MA; Arcaro M; Weiner KS; Kalkus JF; Inati SJ; Gross CG; Kastner S
    J Neurophysiol; 2009 May; 101(5):2581-600. PubMed ID: 19225169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociable pathways for moving and static face perception begin in early visual cortex: Evidence from an acquired prosopagnosic.
    Sliwinska MW; Bearpark C; Corkhill J; McPhillips A; Pitcher D
    Cortex; 2020 Sep; 130():327-339. PubMed ID: 32736196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individuating faces and common objects produces equal responses in putative face-processing areas in the ventral occipitotemporal cortex.
    Haist F; Lee K; Stiles J
    Front Hum Neurosci; 2010; 4():181. PubMed ID: 21206532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Awake fMRI reveals a specialized region in dog temporal cortex for face processing.
    Dilks DD; Cook P; Weiller SK; Berns HP; Spivak M; Berns GS
    PeerJ; 2015; 3():e1115. PubMed ID: 26290784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Brain Imaging Reveals Analogous and Divergent Patterns of Species and Face Sensitivity in Humans and Dogs.
    Bunford N; Hernández-Pérez R; Farkas EB; Cuaya LV; Szabó D; Szabó ÁG; Gácsi M; Miklósi Á; Andics A
    J Neurosci; 2020 Oct; 40(43):8396-8408. PubMed ID: 33020215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring the response to visually presented faces in the human lateral prefrontal cortex.
    Nikel L; Sliwinska MW; Kucuk E; Ungerleider LG; Pitcher D
    Cereb Cortex Commun; 2022; 3(3):tgac036. PubMed ID: 36159205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural responses to rigidly moving faces displaying shifts in social attention investigated with fMRI and MEG.
    Lee LC; Andrews TJ; Johnson SJ; Woods W; Gouws A; Green GG; Young AW
    Neuropsychologia; 2010 Jan; 48(2):477-90. PubMed ID: 19833143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are face-responsive regions selective only for faces?
    Chao LL; Martin A; Haxby JV
    Neuroreport; 1999 Sep; 10(14):2945-50. PubMed ID: 10549802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The functionally defined right occipital and fusiform "face areas" discriminate novel from visually familiar faces.
    Rossion B; Schiltz C; Crommelinck M
    Neuroimage; 2003 Jul; 19(3):877-83. PubMed ID: 12880816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the fusiform gyrus when individuals with autism spectrum disorder view faces.
    Hadjikhani N; Joseph RM; Snyder J; Chabris CF; Clark J; Steele S; McGrath L; Vangel M; Aharon I; Feczko E; Harris GJ; Tager-Flusberg H
    Neuroimage; 2004 Jul; 22(3):1141-50. PubMed ID: 15219586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional brain response to faces of humans and dogs.
    Blonder LX; Smith CD; Davis CE; Kesler-West ML; Garrity TF; Avison MJ; Andersen AH
    Brain Res Cogn Brain Res; 2004 Aug; 20(3):384-94. PubMed ID: 15268916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Face-specific processing in the human fusiform gyrus.
    McCarthy G; Puce A; Gore JC; Allison T
    J Cogn Neurosci; 1997; 9(5):605-10. PubMed ID: 23965119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Object representations for multiple visual categories overlap in lateral occipital and medial fusiform cortex.
    Pourtois G; Schwartz S; Spiridon M; Martuzzi R; Vuilleumier P
    Cereb Cortex; 2009 Aug; 19(8):1806-19. PubMed ID: 19015371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential selectivity for dynamic versus static information in face-selective cortical regions.
    Pitcher D; Dilks DD; Saxe RR; Triantafyllou C; Kanwisher N
    Neuroimage; 2011 Jun; 56(4):2356-63. PubMed ID: 21473921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.