These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
910 related articles for article (PubMed ID: 35011387)
1. In Vitro Evaluation of the Anti-Diabetic Potential of Aqueous Acetone Akinyede KA; Oyewusi HA; Hughes GD; Ekpo OE; Oguntibeju OO Molecules; 2021 Dec; 27(1):. PubMed ID: 35011387 [TBL] [Abstract][Full Text] [Related]
2. Isolation and characterization of resveratrol oligomers from the stem bark of Hopea ponga (Dennst.) Mabb. And their antidiabetic effect by modulation of digestive enzymes, protein glycation and glucose uptake in L6 myocytes. Sasikumar P; Lekshmy K; Sini S; Prabha B; Kumar NA; Sivan VV; Jithin MM; Jayamurthy P; Shibi IG; Radhakrishnan KV J Ethnopharmacol; 2019 May; 236():196-204. PubMed ID: 30844488 [TBL] [Abstract][Full Text] [Related]
3. Antidiabetic potential of Catechu via assays for α-glucosidase, α-amylase, and glucose uptake in adipocytes. Zhang K; Chen XL; Zhao X; Ni JY; Wang HL; Han M; Zhang YM J Ethnopharmacol; 2022 Jun; 291():115118. PubMed ID: 35202712 [TBL] [Abstract][Full Text] [Related]
4. Identification of α-Glucosidase Inhibitors from Shah M; Rahman H; Khan A; Bibi S; Ullah O; Ullah S; Ur Rehman N; Murad W; Al-Harrasi A Molecules; 2022 Feb; 27(4):. PubMed ID: 35209111 [TBL] [Abstract][Full Text] [Related]
5. Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of Quan NV; Xuan TD; Tran HD; Thuy NTD; Trang LT; Huong CT; Andriana Y; Tuyen PT Molecules; 2019 Feb; 24(3):. PubMed ID: 30744084 [TBL] [Abstract][Full Text] [Related]
6. HPLC-DAD phenolics analysis, α-glucosidase, α-amylase inhibitory, molecular docking and nutritional profiles of Persicaria hydropiper L. Mahnashi MH; Alqahtani YS; Alyami BA; Alqarni AO; Alqahl SA; Ullah F; Sadiq A; Zeb A; Ghufran M; Kuraev A; Nawaz A; Ayaz M BMC Complement Med Ther; 2022 Jan; 22(1):26. PubMed ID: 35086537 [TBL] [Abstract][Full Text] [Related]
8. LC-MS/MS, GC-MS and molecular docking analysis for phytochemical fingerprint and bioactivity of Beta vulgaris L. Üst Ö; Yalçin E; Çavuşoğlu K; Özkan B Sci Rep; 2024 Mar; 14(1):7491. PubMed ID: 38553576 [TBL] [Abstract][Full Text] [Related]
9. Antidiabetic potential of phytochemicals isolated from the stem bark of Myristica fatua Houtt. var. magnifica (Bedd.) Sinclair. Prabha B; Neethu S; Krishnan SL; Sherin DR; Madhukrishnan M; Ananthakrishnan R; Rameshkumar KB; Manojkumar TK; Jayamurthy P; Radhakrishnan KV Bioorg Med Chem; 2018 Jul; 26(12):3461-3467. PubMed ID: 29789207 [TBL] [Abstract][Full Text] [Related]
10. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. Sabiu S; O'Neill FH; Ashafa AOT J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829 [TBL] [Abstract][Full Text] [Related]
11. Phytochemicals and enzymes inhibitory potentials of leaves and rootbarks of Sarcocephallus latifolius (smith): In vitro and in silico investigations. Ajiboye AT; Asekun OT; Ayipo YO; Mordi MN; Familoni OB; Ali Z; Khan IA Fitoterapia; 2024 Jul; 176():106037. PubMed ID: 38801897 [TBL] [Abstract][Full Text] [Related]
12. In Vitro and Molecular Docking Evaluation of the Anticholinesterase and Antidiabetic Effects of Compounds from Feunaing RT; Tamfu AN; Gbaweng AJY; Kucukaydin S; Tchamgoue J; Lannang AM; Lenta BN; Kouam SF; Duru ME; Anouar EH; Talla E; Dinica RM Molecules; 2024 May; 29(11):. PubMed ID: 38893333 [TBL] [Abstract][Full Text] [Related]
13. Identification of Dipeptidyl Peptidase-4 and α-Amylase Inhibitors from Quek A; Kassim NK; Ismail A; Latif MAM; Shaari K; Tan DC; Lim PC Molecules; 2020 Dec; 26(1):. PubMed ID: 33374962 [TBL] [Abstract][Full Text] [Related]
14. Osman W; Ismail EMOA; Shantier SW; Mohammed MS; Mothana RA; Muddathir A; Khalid HS J Recept Signal Transduct Res; 2021 Apr; 41(2):159-169. PubMed ID: 32718219 [TBL] [Abstract][Full Text] [Related]
15. Inhibitory and in silico molecular docking of Xeroderris stuhlmannii (Taub.) Mendonca & E.P. Sousa phytochemical compounds on human α-glucosidases. Nyathi B; Bvunzawabaya JT; Venissa P Mudawarima C; Manzombe E; Tsotsoro K; Selemani MA; Munyuki G; Rwere F J Ethnopharmacol; 2023 Aug; 312():116501. PubMed ID: 37100261 [TBL] [Abstract][Full Text] [Related]
16. Comparative study of the antidiabetic potential of Tan DC; Idris KI; Kassim NK; Lim PC; Safinar Ismail I; Hamid M; Ng RC Pharm Biol; 2019 Dec; 57(1):345-354. PubMed ID: 31185767 [No Abstract] [Full Text] [Related]
17. Chickpea (Cicer arietinum L.) Lectin Exhibit Inhibition of ACE-I, α-amylase and α-glucosidase Activity. Bhagyawant SS; Narvekar DT; Gupta N; Bhadkaria A; Gautam AK; Srivastava N Protein Pept Lett; 2019; 26(7):494-501. PubMed ID: 30919768 [TBL] [Abstract][Full Text] [Related]
18. Das SK; Dash S; Thatoi H; Patra JK Comb Chem High Throughput Screen; 2020; 23(9):945-954. PubMed ID: 32342807 [TBL] [Abstract][Full Text] [Related]
19. Novel acyl hydrazide derivatives of polyhydroquinoline as potent anti-diabetic and anti-glycating agents: Synthesis, in vitro α-amylase, α-glucosidase inhibition and anti-glycating activity with molecular docking insights. Ur Rahman S; Alam A; Parveen Z; Zainab ; Assad M; Adnan Ali Shah S; Rafiq H; Ayaz M; Latif A; Naveed Umar M; Ali M; Ahmad M Bioorg Chem; 2024 Sep; 150():107501. PubMed ID: 38865858 [TBL] [Abstract][Full Text] [Related]
20. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. Jhong CH; Riyaphan J; Lin SH; Chia YC; Weng CF Biofactors; 2015; 41(4):242-51. PubMed ID: 26154585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]