These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 35011396)
1. Antibacterial Activity of Clay Soils against Food-Borne Azmi NN; Mahyudin NA; Wan Omar WH; Mahmud Ab Rashid NK; Ishak CF; Abdullah AH; Sharples GJ Molecules; 2021 Dec; 27(1):. PubMed ID: 35011396 [TBL] [Abstract][Full Text] [Related]
2. Effect of natural antibacterial clays against single biofilm formation by Staphylococcus aureus and Salmonella Typhimurium bacteria on a stainless-steel surface. Wan Omar WH; Mahyudin NA; Azmi NN; Mahmud Ab Rashid NK; Ismail R; Mohd Yusoff MHY; Khairil Mokhtar NF; Sharples GJ Int J Food Microbiol; 2023 Jun; 394():110184. PubMed ID: 36996693 [TBL] [Abstract][Full Text] [Related]
3. Antibacterial mechanism of Malaysian Carey clay against food-borne Azmi NN; Mahyudin NA; Wan Omar WH; Abdullah AH; Ismail R; Ishak CF; Sharples GJ Nat Prod Res; 2024 May; ():1-5. PubMed ID: 38767201 [TBL] [Abstract][Full Text] [Related]
4. Unearthing the Antibacterial Mechanism of Medicinal Clay: A Geochemical Approach to Combating Antibiotic Resistance. Morrison KD; Misra R; Williams LB Sci Rep; 2016 Jan; 6():19043. PubMed ID: 26743034 [TBL] [Abstract][Full Text] [Related]
5. Antibacterial Activity of Olive Oil Polyphenol Extract Against Guo L; Gong S; Wang Y; Sun Q; Duo K; Fei P Foodborne Pathog Dis; 2020 Jun; 17(6):396-403. PubMed ID: 31755743 [TBL] [Abstract][Full Text] [Related]
6. Mineralogical variables that control the antibacterial effectiveness of a natural clay deposit. Morrison KD; Underwood JC; Metge DW; Eberl DD; Williams LB Environ Geochem Health; 2014 Aug; 36(4):613-31. PubMed ID: 24258612 [TBL] [Abstract][Full Text] [Related]
7. Natural and ion-exchanged illite clays reduce bacterial burden and inflammation in cutaneous meticillin-resistant Staphylococcus aureus infections in mice. Otto CC; Kilbourne J; Haydel SE J Med Microbiol; 2016 Jan; 65(1):19-27. PubMed ID: 26508716 [TBL] [Abstract][Full Text] [Related]
8. A New Look at the Purported Health Benefits of Commercial and Natural Clays. Incledion A; Boseley M; Moses RL; Moseley R; Hill KE; Thomas DW; Adams RA; Jones TP; BéruBé KA Biomolecules; 2021 Jan; 11(1):. PubMed ID: 33466399 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the medicinal use of clay minerals as antibacterial agents. Williams LB; Haydel SE Int Geol Rev; 2010 Jul; 52(7/8):745-770. PubMed ID: 20640226 [TBL] [Abstract][Full Text] [Related]
10. Synergistic inhibition of Pereira Batista AF; Coelho Trevisan DA; Rodrigues Dos Santos A; Silva AF; Zanetti Campanerut-Sá PA; Alves de Abreu Filho B; Junior MM; Graton Mikcha JM Food Sci Technol Int; 2024 Jun; 30(4):384-394. PubMed ID: 36974393 [TBL] [Abstract][Full Text] [Related]
11. Broad-Spectrum Antimicrobial and Antibiofilm Activity of a Natural Clay Mineral from British Columbia, Canada. Behroozian S; Svensson SL; Li LY; Davies JE mBio; 2020 Oct; 11(5):. PubMed ID: 33024043 [TBL] [Abstract][Full Text] [Related]
12. Fine mechanisms of the interaction of silver nanoparticles with the cells of Salmonella typhimurium and Staphylococcus aureus. Grigor'eva A; Saranina I; Tikunova N; Safonov A; Timoshenko N; Rebrov A; Ryabchikova E Biometals; 2013 Jun; 26(3):479-88. PubMed ID: 23686387 [TBL] [Abstract][Full Text] [Related]
13. Effect of Chitosan Physical Form on Its Antibacterial Activity Against Pathogenic Bacteria. Ardila N; Daigle F; Heuzey MC; Ajji A J Food Sci; 2017 Mar; 82(3):679-686. PubMed ID: 28140469 [TBL] [Abstract][Full Text] [Related]
14. Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures. Otto CC; Haydel SE PLoS One; 2013; 8(5):e64068. PubMed ID: 23691149 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of Extract-Bacterial Cellulose Composite Using Ageratum conyzoides L. and Chromolaena odorata L., Its Antibacterial Activities, and Biodegradability Properties. Indrianingsih AW; Ahla MFF; Sanjaya EH; Suryani R; Windarsih A Appl Biochem Biotechnol; 2024 Aug; 196(8):5127-5143. PubMed ID: 38112992 [TBL] [Abstract][Full Text] [Related]
16. The interweaving roles of mineral and microbiome in shaping the antibacterial activity of archaeological medicinal clays. Christidis GE; Knapp CW; Venieri D; Gounaki I; Elgy C; Valsami-Jones E; Photos-Jones E J Ethnopharmacol; 2020 Oct; 260():112894. PubMed ID: 32348844 [TBL] [Abstract][Full Text] [Related]
17. Chemical composition, antibacterial activity and related mechanism of valonia and shell from Quercus variabilis Blume (Fagaceae) against Salmonella paratyphi a and Staphylococcus aureus. Zhou D; Liu ZH; Wang DM; Li DW; Yang LN; Wang W BMC Complement Altern Med; 2019 Oct; 19(1):271. PubMed ID: 31627724 [TBL] [Abstract][Full Text] [Related]
18. Assessment of oligogalacturonide from citrus pectin as a potential antibacterial agent against foodborne pathogens. Wu MC; Li HC; Wu PH; Huang PH; Wang YT J Food Sci; 2014 Aug; 79(8):M1541-4. PubMed ID: 25048440 [TBL] [Abstract][Full Text] [Related]
19. Characterization and mode of action of a potent bio-preservative from food-grade Bacillus licheniformis MCC 2016. Vadakedath N; Halami PM Prep Biochem Biotechnol; 2019; 49(4):334-343. PubMed ID: 30712459 [TBL] [Abstract][Full Text] [Related]
20. Antibacterial, anti-biofilm and anti-quorum sensing activities of Artemisia dracunculus essential oil (EO): a study against Salmonella enterica serovar Typhimurium and Staphylococcus aureus. Mohammadi Pelarti S; Karimi Zarehshuran L; Babaeekhou L; Ghane M Arch Microbiol; 2021 May; 203(4):1529-1537. PubMed ID: 33399891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]