These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Targeting myeloid-derived suppressor cells in tumor immunotherapy: Current, future and beyond. Zhao Y; Du J; Shen X Front Immunol; 2023; 14():1157537. PubMed ID: 37006306 [TBL] [Abstract][Full Text] [Related]
3. The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion. De Cicco P; Ercolano G; Ianaro A Front Immunol; 2020; 11():1680. PubMed ID: 32849585 [TBL] [Abstract][Full Text] [Related]
4. Targeting the crosstalk between cytokine-induced killer cells and myeloid-derived suppressor cells in hepatocellular carcinoma. Yu SJ; Ma C; Heinrich B; Brown ZJ; Sandhu M; Zhang Q; Fu Q; Agdashian D; Rosato U; Korangy F; Greten TF J Hepatol; 2019 Mar; 70(3):449-457. PubMed ID: 30414862 [TBL] [Abstract][Full Text] [Related]
5. Immunotherapy of targeting MDSCs in tumor microenvironment. Sui H; Dongye S; Liu X; Xu X; Wang L; Jin CQ; Yao M; Gong Z; Jiang D; Zhang K; Liu Y; Liu H; Jiang G; Su Y Front Immunol; 2022; 13():990463. PubMed ID: 36131911 [TBL] [Abstract][Full Text] [Related]
6. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy. Wu Y; Yi M; Niu M; Mei Q; Wu K Mol Cancer; 2022 Sep; 21(1):184. PubMed ID: 36163047 [TBL] [Abstract][Full Text] [Related]
7. A new histone deacetylase inhibitor remodels the tumor microenvironment by deletion of polymorphonuclear myeloid-derived suppressor cells and sensitizes prostate cancer to immunotherapy. Chen Z; Yang X; Chen Z; Li M; Wang W; Yang R; Wang Z; Ma Y; Xu Y; Ao S; Liang L; Cai C; Wang C; Deng T; Gu D; Zhou H; Zeng G BMC Med; 2023 Oct; 21(1):402. PubMed ID: 37880708 [TBL] [Abstract][Full Text] [Related]
8. TLR9 expression and secretion of LIF by prostate cancer cells stimulates accumulation and activity of polymorphonuclear MDSCs. Won H; Moreira D; Gao C; Duttagupta P; Zhao X; Manuel E; Diamond D; Yuan YC; Liu Z; Jones J; D'Apuzzo M; Pal S; Kortylewski M J Leukoc Biol; 2017 Aug; 102(2):423-436. PubMed ID: 28533357 [TBL] [Abstract][Full Text] [Related]
9. Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Dysthe M; Parihar R Adv Exp Med Biol; 2020; 1224():117-140. PubMed ID: 32036608 [TBL] [Abstract][Full Text] [Related]
10. CD200 promotes immunosuppression in the pancreatic tumor microenvironment. Choueiry F; Torok M; Shakya R; Agrawal K; Deems A; Benner B; Hinton A; Shaffer J; Blaser BW; Noonan AM; Williams TM; Dillhoff M; Conwell DL; Hart PA; Cruz-Monserrate Z; Bai XF; Carson WE; Mace TA J Immunother Cancer; 2020 Jun; 8(1):. PubMed ID: 32581043 [TBL] [Abstract][Full Text] [Related]
11. Myeloid-derived suppressor cells-new and exciting players in lung cancer. Yang Z; Guo J; Weng L; Tang W; Jin S; Ma W J Hematol Oncol; 2020 Jan; 13(1):10. PubMed ID: 32005273 [TBL] [Abstract][Full Text] [Related]
13. Circulating myeloid-derived suppressor cells and survival in prostate cancer patients: systematic review and meta-analysis. Bronte G; Conteduca V; Landriscina M; Procopio AD Prostate Cancer Prostatic Dis; 2023 Mar; 26(1):41-46. PubMed ID: 36411316 [TBL] [Abstract][Full Text] [Related]
14. Reduction of myeloid-derived suppressor cells in prostate cancer murine models and patients following white button mushroom treatment. Wang X; Ma S; Twardowski P; Lau C; Chan YS; Wong K; Xiao S; Wang J; Wu X; Frankel P; Wilson TG; Synold TW; Presant C; Dorff T; Yu J; Sadava D; Chen S Clin Transl Med; 2024 Oct; 14(10):e70048. PubMed ID: 39390760 [TBL] [Abstract][Full Text] [Related]
15. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Law AMK; Valdes-Mora F; Gallego-Ortega D Cells; 2020 Feb; 9(3):. PubMed ID: 32121014 [TBL] [Abstract][Full Text] [Related]
16. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Lu X; Horner JW; Paul E; Shang X; Troncoso P; Deng P; Jiang S; Chang Q; Spring DJ; Sharma P; Zebala JA; Maeda DY; Wang YA; DePinho RA Nature; 2017 Mar; 543(7647):728-732. PubMed ID: 28321130 [TBL] [Abstract][Full Text] [Related]
17. The Emerging Role of Myeloid-Derived Suppressor Cells in the Glioma Immune Suppressive Microenvironment. Mi Y; Guo N; Luan J; Cheng J; Hu Z; Jiang P; Jin W; Gao X Front Immunol; 2020; 11():737. PubMed ID: 32391020 [TBL] [Abstract][Full Text] [Related]
18. Roles of the Exosomes Derived From Myeloid-Derived Suppressor Cells in Tumor Immunity and Cancer Progression. Chen Z; Yuan R; Hu S; Yuan W; Sun Z Front Immunol; 2022; 13():817942. PubMed ID: 35154134 [TBL] [Abstract][Full Text] [Related]
19. Immunosuppressive Effects of Myeloid-Derived Suppressor Cells in Cancer and Immunotherapy. Krishnamoorthy M; Gerhardt L; Maleki Vareki S Cells; 2021 May; 10(5):. PubMed ID: 34065010 [TBL] [Abstract][Full Text] [Related]
20. New Insights into the Multifaceted Role of Myeloid-Derived Suppressor Cells (MDSCs) in High-Grade Gliomas: From Metabolic Reprograming, Immunosuppression, and Therapeutic Resistance to Current Strategies for Targeting MDSCs. Lakshmanachetty S; Cruz-Cruz J; Hoffmeyer E; Cole AP; Mitra SS Cells; 2021 Apr; 10(4):. PubMed ID: 33919732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]