These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 35011582)
21. Targeting myeloid-derived suppressor cells for cancer immunotherapy. Liu Y; Wei G; Cheng WA; Dong Z; Sun H; Lee VY; Cha SC; Smith DL; Kwak LW; Qin H Cancer Immunol Immunother; 2018 Aug; 67(8):1181-1195. PubMed ID: 29855694 [TBL] [Abstract][Full Text] [Related]
22. Myeloid-derived suppressor cells: Important contributors to tumor progression and metastasis. Safarzadeh E; Orangi M; Mohammadi H; Babaie F; Baradaran B J Cell Physiol; 2018 Apr; 233(4):3024-3036. PubMed ID: 28661031 [TBL] [Abstract][Full Text] [Related]
23. Myeloid-derived suppressor cells in cancer: Current knowledge and future perspectives. Rajkumari S; Singh J; Agrawal U; Agrawal S Int Immunopharmacol; 2024 Dec; 142(Pt A):112949. PubMed ID: 39236460 [TBL] [Abstract][Full Text] [Related]
24. Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells. Deng Y; Cheng J; Fu B; Liu W; Chen G; Zhang Q; Yang Y Oncogene; 2017 Feb; 36(8):1090-1101. PubMed ID: 27593937 [TBL] [Abstract][Full Text] [Related]
25. The STAT3 inhibitor galiellalactone inhibits the generation of MDSC-like monocytes by prostate cancer cells and decreases immunosuppressive and tumorigenic factors. Hellsten R; Lilljebjörn L; Johansson M; Leandersson K; Bjartell A Prostate; 2019 Oct; 79(14):1611-1621. PubMed ID: 31348843 [TBL] [Abstract][Full Text] [Related]
26. Targeting Inhibition of Accumulation and Function of Myeloid-Derived Suppressor Cells by Artemisinin via PI3K/AKT, mTOR, and MAPK Pathways Enhances Anti-PD-L1 Immunotherapy in Melanoma and Liver Tumors. Zhang M; Wang L; Liu W; Wang T; De Sanctis F; Zhu L; Zhang G; Cheng J; Cao Q; Zhou J; Tagliabue A; Bronte V; Yan D; Wan X; Yu G J Immunol Res; 2022; 2022():2253436. PubMed ID: 35785030 [TBL] [Abstract][Full Text] [Related]
27. Comparing the frequency of CD33 Sanaei MJ; Taheri F; Heshmati M; Bashash D; Nazmabadi R; Mohammad-Alibeigi F; Nahid-Samiei M; Shirzad H; Bagheri N Cell Biol Int; 2021 Oct; 45(10):2086-2095. PubMed ID: 34184811 [TBL] [Abstract][Full Text] [Related]
28. Tumor microenvironment, histone modifications, and myeloid-derived suppressor cells. Tian X; Wang T; Shen H; Wang S Cytokine Growth Factor Rev; 2023 Dec; 74():108-121. PubMed ID: 37598011 [TBL] [Abstract][Full Text] [Related]
29. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Groth C; Hu X; Weber R; Fleming V; Altevogt P; Utikal J; Umansky V Br J Cancer; 2019 Jan; 120(1):16-25. PubMed ID: 30413826 [TBL] [Abstract][Full Text] [Related]
30. Immunotherapy Targeting Myeloid-Derived Suppressor Cells (MDSCs) in Tumor Microenvironment. Gao X; Sui H; Zhao S; Gao X; Su Y; Qu P Front Immunol; 2020; 11():585214. PubMed ID: 33613512 [TBL] [Abstract][Full Text] [Related]
31. Metabolic reprograming of MDSCs within tumor microenvironment and targeting for cancer immunotherapy. Li Q; Xiang M Acta Pharmacol Sin; 2022 Jun; 43(6):1337-1348. PubMed ID: 34561553 [TBL] [Abstract][Full Text] [Related]
32. Myeloid-Derived Suppressor Cells (MDSCs) in Ovarian Cancer-Looking Back and Forward. Okła K Cells; 2023 Jul; 12(14):. PubMed ID: 37508575 [TBL] [Abstract][Full Text] [Related]
33. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy. Li X; Zhong J; Deng X; Guo X; Lu Y; Lin J; Huang X; Wang C Front Immunol; 2021; 12():754196. PubMed ID: 35003065 [TBL] [Abstract][Full Text] [Related]
34. The role of myeloid-derived suppressor cells in hematologic malignancies. Gunes EG; Rosen ST; Querfeld C Curr Opin Oncol; 2020 Sep; 32(5):518-526. PubMed ID: 32675593 [TBL] [Abstract][Full Text] [Related]
35. Positive Pelvic Lymph Nodes in Prostate Cancer Harbor Immune Suppressor Cells To Impair Tumor-reactive T Cells. Sharma V; Dong H; Kwon E; Karnes RJ Eur Urol Focus; 2018 Jan; 4(1):75-79. PubMed ID: 28753790 [TBL] [Abstract][Full Text] [Related]
36. Immunosuppressive Myeloid Cells' Blockade in the Glioma Microenvironment Enhances the Efficacy of Immune-Stimulatory Gene Therapy. Kamran N; Kadiyala P; Saxena M; Candolfi M; Li Y; Moreno-Ayala MA; Raja N; Shah D; Lowenstein PR; Castro MG Mol Ther; 2017 Jan; 25(1):232-248. PubMed ID: 28129117 [TBL] [Abstract][Full Text] [Related]
37. The Role of Myeloid-Derived Suppressor Cells in Tumor Growth and Metastasis. Bayik D; Lee J; Lathia JD Exp Suppl; 2022; 113():189-217. PubMed ID: 35165865 [TBL] [Abstract][Full Text] [Related]
38. Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment. Qu P; Wang LZ; Lin PC Cancer Lett; 2016 Sep; 380(1):253-6. PubMed ID: 26519756 [TBL] [Abstract][Full Text] [Related]
40. Crosstalk between myeloid-derived suppressor cells and the immune system in prostate cancer: MDSCs and immune system in Prostate cancer. Sanaei MJ; Salimzadeh L; Bagheri N J Leukoc Biol; 2020 Jan; 107(1):43-56. PubMed ID: 31721301 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]