These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35012074)

  • 1. Enhanced Heat Dissipation Performance of Automotive LED Lamps Using Graphene Coatings.
    Teng TP; Chen WJ; Chang CH
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of the Heat-Dissipating Performance of Powder Coating with Graphene.
    Kung F; Yang MC
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32531901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Surfactants on Graphene Dispersion and Thermal Performance for Heat Dissipation Coating.
    Cheng C; Shi WH; Teng TP; Yang CR
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on Heat Dissipation of Multi-Chip LED Filament Package.
    Tan L; Liu P; She C; Xu P; Yan L; Quan H
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monolayer graphene dispersion and radiative cooling for high power LED.
    Hsiao TJ; Eyassu T; Henderson K; Kim T; Lin CT
    Nanotechnology; 2013 Oct; 24(39):395401. PubMed ID: 24008305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Thermal Dissipation of Al Heat Sink When Inserting Ceramic Powders by Ultrasonic Mechanical Coating and Armoring.
    Tsai WY; Huang GR; Wang KK; Chen CF; Huang JC
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon and Graphene Coatings for the Thermal Management of Sustainable LMP Batteries for Automotive Applications.
    Sequino L; Sebastianelli G; Vaglieco BM
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light distribution technology of light-emitting-diode automotive lamps based on rippling pattern.
    Zhuang J
    Appl Opt; 2023 Jul; 62(21):5714-5719. PubMed ID: 37707188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of thermal dissipation by adding graphene materials to surface coating of LED lighting module.
    Kim S; Jeong JY; Han SH; Kim JH; Kwon KT; Hwang MK; Kim IT; Cho GS
    J Nanosci Nanotechnol; 2013 May; 13(5):3554-8. PubMed ID: 23858901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective micro-spray cooling for light-emitting diode with graphene nanoporous layers.
    Lay KK; Cheong BM; Tong WL; Tan MK; Hung YM
    Nanotechnology; 2017 Apr; 28(16):164003. PubMed ID: 28244882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Analysis of the IGBT Heat Dissipation Structure Based on Computational Continuum Mechanics.
    Lin X; Wu H; Liu Z; Ying B; Ye C; Zhang Y; Li Z
    Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous copper-graphene heterostructures for cooling of electronic devices.
    Rho H; Jang YS; Kim S; Bae S; Kim TW; Lee DS; Ha JS; Lee SH
    Nanoscale; 2017 Jun; 9(22):7565-7569. PubMed ID: 28534904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimization of lumen depreciation in LED lamps using thermal transient behavior analysis and design optimizations.
    Khan MN
    Appl Opt; 2016 Feb; 55(5):1170-6. PubMed ID: 26906393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat transfer properties and thermal cure of glass-ionomer dental cements.
    Gavic L; Gorseta K; Glavina D; Czarnecka B; Nicholson JW
    J Mater Sci Mater Med; 2015 Oct; 26(10):249. PubMed ID: 26411445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of location, power allocation and orientation for lighting lamps in a visible light communication system using the firefly algorithm.
    Wei Z; Hu H; Huang H
    Opt Express; 2021 Mar; 29(6):8796-8808. PubMed ID: 33820321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Thermal Interface Materials on Heat Dissipation of Light-Emitting Diode Headlamps with Thermally-Conductive Plastics.
    Lee DK; Cha YJ; Kwak JS
    J Nanosci Nanotechnol; 2021 Jul; 21(7):3721-3728. PubMed ID: 33715681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of a Novel Polymeric Hollow Fiber Heat Exchanger and a Commercially Available Metal Automotive Radiator.
    Kroulíková T; Kůdelová T; Bartuli E; Vančura J; Astrouski I
    Polymers (Basel); 2021 Apr; 13(7):. PubMed ID: 33917588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of Temperature and Optical Power of an LED by Using Microfluidic Circulating System of Graphene Solution.
    Chung YC; Chung HH; Lin SH
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34209913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of light-emitting diode uses for annular reactor inner-coated with TiO2 or nitrogen-doped TiO2 for control of dimethyl sulfide.
    Jo WK; Eun SS; Shin SH
    Photochem Photobiol; 2011; 87(5):1016-23. PubMed ID: 21707635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing automotive cooling systems: composite fins and nanoparticles analysis in radiators.
    Ramesh Kumar R; Karthik K; Elumalai PV; Elumalai R; Chandran D; Prakash E; Hassin N
    Sci Rep; 2024 Feb; 14(1):3650. PubMed ID: 38351203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.