These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35012176)

  • 1. Custom-Made Poly(urethane) Coatings Improve the Mechanical Properties of Bioactive Glass Scaffolds Designed for Bone Tissue Engineering.
    Boffito M; Servello L; Arango-Ospina M; Miglietta S; Tortorici M; Sartori S; Ciardelli G; Boccaccini AR
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application.
    Fereshteh Z; Nooeaid P; Fathi M; Bagri A; Boccaccini AR
    Data Brief; 2015 Sep; 4():524-8. PubMed ID: 26966716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.
    Poh PSP; Hutmacher DW; Holzapfel BM; Solanki AK; Stevens MM; Woodruff MA
    Acta Biomater; 2016 Jan; 30():319-333. PubMed ID: 26563472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications.
    Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A
    J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of HA and BG in engineering poly(ε-caprolactone) porous scaffolds for accelerating cranial bone regeneration.
    Yin HM; Li X; Wang P; Ren Y; Liu W; Xu JZ; Li JH; Li ZM
    J Biomed Mater Res A; 2019 Mar; 107(3):654-662. PubMed ID: 30474348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering.
    Arbade GK; Srivastava J; Tripathi V; Lenka N; Patro TU
    J Biomater Sci Polym Ed; 2020 Sep; 31(13):1648-1670. PubMed ID: 32402230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials.
    Allo BA; Rizkalla AS; Mequanint K
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3148-56. PubMed ID: 22625179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite.
    Yazdimamaghani M; Razavi M; Vashaee D; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():436-444. PubMed ID: 25686970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Bioactivity of Nanofibrous Poly(Caprolactone)/45S5 Bioglass Composite Scaffolds by Incorporation of Ag, GO, and ZnO Nanoparticles.
    Ramar G; Bensingh RJ; Bhuvana KP
    ACS Biomater Sci Eng; 2023 Nov; 9(11):6186-6197. PubMed ID: 37774377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue engineering scaffolds of mesoporous magnesium silicate and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) composite.
    He D; Dong W; Tang S; Wei J; Liu Z; Gu X; Li M; Guo H; Niu Y
    J Mater Sci Mater Med; 2014 Jun; 25(6):1415-24. PubMed ID: 24595904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications.
    Dittler ML; Unalan I; Grünewald A; Beltrán AM; Grillo CA; Destch R; Gonzalez MC; Boccaccini AR
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110346. PubMed ID: 31325780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds.
    Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR
    J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial 45S5 Bioglass®-based scaffolds reinforced with genipin cross-linked gelatin for bone tissue engineering.
    Li W; Wang H; Ding Y; Scheithauer EC; Goudouri OM; Grünewald A; Detsch R; Agarwal S; Boccaccini AR
    J Mater Chem B; 2015 Apr; 3(16):3367-3378. PubMed ID: 32262331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the mechanical and in vitro performance of robocast bioglass scaffolds by polymeric coatings: Effect of polymer composition.
    Motealleh A; Eqtesadi S; Pajares A; Miranda P
    J Mech Behav Biomed Mater; 2018 Aug; 84():35-45. PubMed ID: 29729579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration.
    Poh PS; Hutmacher DW; Stevens MM; Woodruff MA
    Biofabrication; 2013 Dec; 5(4):045005. PubMed ID: 24192136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactivity of polyurethane-based scaffolds coated with Bioglass.
    Bil M; Ryszkowska J; Roether JA; Bretcanu O; Boccaccini AR
    Biomed Mater; 2007 Jun; 2(2):93-101. PubMed ID: 18458441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Application of mechanically reinforced 45S5 Bioglass
    Chen L; Yang X; Ma R; Zhu L
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2017 May; 46(6):600-608. PubMed ID: 29658662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorous pentoxide-free bioactive glass exhibits dose-dependent angiogenic and osteogenic capacities which are retained in glass polymeric composite scaffolds.
    Font Tellado S; Delgado JA; Poh SPP; Zhang W; García-Vallés M; Martínez S; Gorustovich A; Morejón L; van Griensven M; Balmayor ER
    Biomater Sci; 2021 Nov; 9(23):7876-7894. PubMed ID: 34676835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression.
    Allo BA; Lin S; Mequanint K; Rizkalla AS
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7574-83. PubMed ID: 23826710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.