BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 35012192)

  • 1. Cellulose-Derived Nanostructures as Sustainable Biomass for Supercapacitors: A Review.
    Ji SM; Kumar A
    Polymers (Basel); 2022 Jan; 14(1):. PubMed ID: 35012192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry.
    Chen C; Hu L
    Acc Chem Res; 2018 Dec; 51(12):3154-3165. PubMed ID: 30299086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocellulose-Based Conductive Membranes for Free-Standing Supercapacitors: A Review.
    Hsu HH; Zhong W
    Membranes (Basel); 2019 Jun; 9(6):. PubMed ID: 31242574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors.
    Xing J; Tao P; Wu Z; Xing C; Liao X; Nie S
    Carbohydr Polym; 2019 Mar; 207():447-459. PubMed ID: 30600028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass-Derived Carbon: A Value-Added Journey Towards Constructing High-Energy Supercapacitors in an Asymmetric Fashion.
    Divya ML; Natarajan S; Lee YS; Aravindan V
    ChemSusChem; 2019 Oct; 12(19):4353-4382. PubMed ID: 31309724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State of the Art and New Directions on Electrospun Lignin/Cellulose Nanofibers for Supercapacitor Application: A Systematic Literature Review.
    Adam AA; Ojur Dennis J; Al-Hadeethi Y; Mkawi EM; Abubakar Abdulkadir B; Usman F; Mudassir Hassan Y; Wadi IA; Sani M
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33271876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocellulose-Enabled, All-Nanofiber, High-Performance Supercapacitor.
    Zhang Q; Chen C; Chen W; Pastel G; Guo X; Liu S; Wang Q; Liu Y; Li J; Yu H; Hu L
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5919-5927. PubMed ID: 30657318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose Nanocrystals (CNC)-Based Functional Materials for Supercapacitor Applications.
    Durairaj A; Maruthapandi M; Saravanan A; Luong JHT; Gedanken A
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose-Based Nanomaterials for Energy Applications.
    Wang X; Yao C; Wang F; Li Z
    Small; 2017 Nov; 13(42):. PubMed ID: 28902985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Overview of Bacterial Cellulose in Flexible Electrochemical Energy Storage.
    Lei W; Jin D; Liu H; Tong Z; Zhang H
    ChemSusChem; 2020 Aug; 13(15):3731-3753. PubMed ID: 32394542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review on Hydrogel-Based Flexible Supercapacitors for Wearable Applications.
    Tadesse MG; Lübben JF
    Gels; 2023 Jan; 9(2):. PubMed ID: 36826276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced Nanocellulose-Based Composites for Flexible Functional Energy Storage Devices.
    Xu T; Du H; Liu H; Liu W; Zhang X; Si C; Liu P; Zhang K
    Adv Mater; 2021 Dec; 33(48):e2101368. PubMed ID: 34561914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose-Based Flexible Functional Materials for Emerging Intelligent Electronics.
    Zhao D; Zhu Y; Cheng W; Chen W; Wu Y; Yu H
    Adv Mater; 2021 Jul; 33(28):e2000619. PubMed ID: 32310313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocellulose-based aerogel electrodes for supercapacitors: A review.
    Nargatti KI; Subhedar AR; Ahankari SS; Grace AN; Dufresne A
    Carbohydr Polym; 2022 Dec; 297():120039. PubMed ID: 36184147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose-Based Conductive Materials for Energy and Sensing Applications.
    Wang DC; Lei SN; Zhong S; Xiao X; Guo QH
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896403
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Zhou S; Nyholm L; Strømme M; Wang Z
    Acc Chem Res; 2019 Aug; 52(8):2232-2243. PubMed ID: 31290643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage.
    Chen W; Yu H; Lee SY; Wei T; Li J; Fan Z
    Chem Soc Rev; 2018 Apr; 47(8):2837-2872. PubMed ID: 29561005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Templating Synthesis of 3D Hollow Tubular Porous Carbon Derived from Straw Cellulose Waste with Excellent Performance for Supercapacitors.
    Chen Z; Wang X; Xue B; Wei Q; Hu L; Wang Z; Yang X; Qiu J
    ChemSusChem; 2019 Apr; 12(7):1390-1400. PubMed ID: 30663234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocellulose-based electrodes and separator toward sustainable and flexible all-solid-state supercapacitor.
    Ding Z; Yang X; Tang Y
    Int J Biol Macromol; 2023 Feb; 228():467-477. PubMed ID: 36572083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable Cellulose Nanofibers-Mediated Synthesis of Uniform Spinel Zn-Ferrites Nanocorals for High Performances in Supercapacitors.
    Teixeira LT; de Lima SLS; Rosado TF; Liu L; Vitorino HA; Dos Santos CC; Mendonça JP; Garcia MAS; Siqueira RNC; da Silva AGM
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.