These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35012341)

  • 1. Systematic Genetic Interaction Analysis Identifies a Transcription Factor Circuit Required for Oropharyngeal Candidiasis.
    Solis NV; Wakade RS; Glazier VE; Ollinger TL; Wellington M; Mitchell AP; Filler SG; Krysan DJ
    mBio; 2022 Feb; 13(1):e0344721. PubMed ID: 35012341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic analysis of the Candida albicans biofilm transcription factor network using simple and complex haploinsufficiency.
    Glazier VE; Murante T; Murante D; Koselny K; Liu Y; Kim D; Koo H; Krysan DJ
    PLoS Genet; 2017 Aug; 13(8):e1006948. PubMed ID: 28793308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. S. oralis activates the Efg1 filamentation pathway in C. albicans to promote cross-kingdom interactions and mucosal biofilms.
    Xu H; Sobue T; Bertolini M; Thompson A; Vickerman M; Nobile CJ; Dongari-Bagtzoglou A
    Virulence; 2017 Nov; 8(8):1602-1617. PubMed ID: 28481721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo.
    Fanning S; Xu W; Solis N; Woolford CA; Filler SG; Mitchell AP
    Eukaryot Cell; 2012 Jul; 11(7):896-904. PubMed ID: 22544909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription Factors Efg1 and Bcr1 Regulate Biofilm Formation and Virulence during Candida albicans-Associated Denture Stomatitis.
    Yano J; Yu A; Fidel PL; Noverr MC
    PLoS One; 2016; 11(7):e0159692. PubMed ID: 27453977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic control of conventional and pheromone-stimulated biofilm formation in Candida albicans.
    Lin CH; Kabrawala S; Fox EP; Nobile CJ; Johnson AD; Bennett RJ
    PLoS Pathog; 2013; 9(4):e1003305. PubMed ID: 23637598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Candida albicans
    Naseem S; Douglas LM; Konopka JB
    mBio; 2019 Nov; 10(6):. PubMed ID: 31719181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intravital Imaging of Candida albicans Identifies Differential
    Wakade RS; Huang M; Mitchell AP; Wellington M; Krysan DJ
    mSphere; 2021 Jun; 6(3):e0043621. PubMed ID: 34160243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of SFP1 in the Regulation of Candida albicans Biofilm Formation.
    Chen HF; Lan CY
    PLoS One; 2015; 10(6):e0129903. PubMed ID: 26087243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic analysis of the
    Kramara J; Kim M-J; Ollinger TL; Ristow LC; Wakade RS; Zarnowski R; Wellington M; Andes DR; Mitchell AG; Krysan DJ
    mBio; 2024 Aug; 15(8):e0124924. PubMed ID: 38949302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bypass of Candida albicans Filamentation/Biofilm Regulators through Diminished Expression of Protein Kinase Cak1.
    Woolford CA; Lagree K; Xu W; Aleynikov T; Adhikari H; Sanchez H; Cullen PJ; Lanni F; Andes DR; Mitchell AP
    PLoS Genet; 2016 Dec; 12(12):e1006487. PubMed ID: 27935965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Candida albicans Sfl1/Sfl2 regulatory network drives the formation of pathogenic microcolonies.
    McCall AD; Kumar R; Edgerton M
    PLoS Pathog; 2018 Sep; 14(9):e1007316. PubMed ID: 30252918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collaboration between Antagonistic Cell Type Regulators Governs Natural Variation in the Candida albicans Biofilm and Hyphal Gene Expression Network.
    Do E; Cravener MV; Huang MY; May G; McManus CJ; Mitchell AP
    mBio; 2022 Oct; 13(5):e0193722. PubMed ID: 35993746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intravital imaging-based genetic screen reveals the transcriptional network governing
    Wakade RS; Ristow LC; Wellington M; Krysan DJ
    Elife; 2023 Feb; 12():. PubMed ID: 36847358
    [No Abstract]   [Full Text] [Related]  

  • 15. Systematic Complex Haploinsufficiency-Based Genetic Analysis of
    Glazier VE; Murante T; Koselny K; Murante D; Esqueda M; Wall GA; Wellington M; Hung CY; Kumar A; Krysan DJ
    G3 (Bethesda); 2018 Mar; 8(4):1299-1314. PubMed ID: 29472308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium houttuyfonate enhances the mono-therapy of fluconazole on oropharyngeal candidiasis (OPC) through HIF-1α/IL-17 axis by inhibiting cAMP mediated filamentation in
    Chen M; Cheng T; Xu C; Pan M; Wu J; Wang T; Wu D; Yan G; Wang C; Shao J
    Virulence; 2022 Dec; 13(1):428-443. PubMed ID: 35195502
    [No Abstract]   [Full Text] [Related]  

  • 17. Reinforcement amid genetic diversity in the Candida albicans biofilm regulatory network.
    Cravener MV; Do E; May G; Zarnowski R; Andes DR; McManus CJ; Mitchell AP
    PLoS Pathog; 2023 Jan; 19(1):e1011109. PubMed ID: 36696432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Candida albicans forms biofilms on the vaginal mucosa.
    Harriott MM; Lilly EA; Rodriguez TE; Fidel PL; Noverr MC
    Microbiology (Reading); 2010 Dec; 156(Pt 12):3635-3644. PubMed ID: 20705667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circuit diversification in a biofilm regulatory network.
    Huang MY; Woolford CA; May G; McManus CJ; Mitchell AP
    PLoS Pathog; 2019 May; 15(5):e1007787. PubMed ID: 31116789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Streptococcus mutans sigX-inducing peptide inhibits the virulence of Candida albicans and oral candidiasis through the Ras1-cAMP-Efg1 pathway.
    Zhang K; Sun IG; Liao B; Yang Y; Ma H; Jiang A; Chen S; Guo Q; Ren B
    Int J Antimicrob Agents; 2023 Aug; 62(2):106855. PubMed ID: 37211262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.