These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 35012349)
1. The Role of Fatty Acid Metabolism in Drug Tolerance of Mycobacterium tuberculosis. Quinonez CG; Lee JJ; Lim J; Odell M; Lawson CP; Anyogu A; Raheem S; Eoh H mBio; 2022 Feb; 13(1):e0355921. PubMed ID: 35012349 [TBL] [Abstract][Full Text] [Related]
2. Fatty acid metabolism of Quinonez CG; Lee JJ; Lim J; Odell M; Lawson CP; Anyogu A; Raheem S; Eoh H Microb Cell; 2022 May; 9(5):123-125. PubMed ID: 35647177 [TBL] [Abstract][Full Text] [Related]
3. Role of the methylcitrate cycle in propionate metabolism and detoxification in Mycobacterium smegmatis. Upton AM; McKinney JD Microbiology (Reading); 2007 Dec; 153(Pt 12):3973-3982. PubMed ID: 18048912 [TBL] [Abstract][Full Text] [Related]
4. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Muñoz-Elías EJ; Upton AM; Cherian J; McKinney JD Mol Microbiol; 2006 Jun; 60(5):1109-22. PubMed ID: 16689789 [TBL] [Abstract][Full Text] [Related]
5. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Eoh H; Rhee KY Proc Natl Acad Sci U S A; 2014 Apr; 111(13):4976-81. PubMed ID: 24639517 [TBL] [Abstract][Full Text] [Related]
6. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Marrero J; Rhee KY; Schnappinger D; Pethe K; Ehrt S Proc Natl Acad Sci U S A; 2010 May; 107(21):9819-24. PubMed ID: 20439709 [TBL] [Abstract][Full Text] [Related]
7. The Nitrogen Regulator GlnR Directly Controls Transcription of the Liu WB; Liu XX; Shen MJ; She GL; Ye BC J Bacteriol; 2019 Apr; 201(8):. PubMed ID: 30745367 [No Abstract] [Full Text] [Related]
8. Glutamate mediated metabolic neutralization mitigates propionate toxicity in intracellular Mycobacterium tuberculosis. Lee JJ; Lim J; Gao S; Lawson CP; Odell M; Raheem S; Woo J; Kang SH; Kang SS; Jeon BY; Eoh H Sci Rep; 2018 May; 8(1):8506. PubMed ID: 29855554 [TBL] [Abstract][Full Text] [Related]
9. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Gould TA; van de Langemheen H; Muñoz-Elías EJ; McKinney JD; Sacchettini JC Mol Microbiol; 2006 Aug; 61(4):940-7. PubMed ID: 16879647 [TBL] [Abstract][Full Text] [Related]
10. Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. Savvi S; Warner DF; Kana BD; McKinney JD; Mizrahi V; Dawes SS J Bacteriol; 2008 Jun; 190(11):3886-95. PubMed ID: 18375549 [TBL] [Abstract][Full Text] [Related]
11. Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection. López-Agudelo VA; Baena A; Ramirez-Malule H; Ochoa S; Barrera LF; Ríos-Estepa R BMC Syst Biol; 2017 Nov; 11(1):107. PubMed ID: 29157227 [TBL] [Abstract][Full Text] [Related]
12. A novel role of the PrpR as a transcription factor involved in the regulation of methylcitrate pathway in Mycobacterium tuberculosis. Masiewicz P; Brzostek A; Wolański M; Dziadek J; Zakrzewska-Czerwińska J PLoS One; 2012; 7(8):e43651. PubMed ID: 22916289 [TBL] [Abstract][Full Text] [Related]
13. Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in Puckett S; Trujillo C; Wang Z; Eoh H; Ioerger TR; Krieger I; Sacchettini J; Schnappinger D; Rhee KY; Ehrt S Proc Natl Acad Sci U S A; 2017 Mar; 114(11):E2225-E2232. PubMed ID: 28265055 [TBL] [Abstract][Full Text] [Related]
14. Global adaptation to a lipid environment triggers the dormancy-related phenotype of Mycobacterium tuberculosis. Rodríguez JG; Hernández AC; Helguera-Repetto C; Aguilar Ayala D; Guadarrama-Medina R; Anzóla JM; Bustos JR; Zambrano MM; González-Y-Merchand J; García MJ; Del Portillo P mBio; 2014 May; 5(3):e01125-14. PubMed ID: 24846381 [TBL] [Abstract][Full Text] [Related]
15. Improving phytosterol biotransformation at low nitrogen levels by enhancing the methylcitrate cycle with transcriptional regulators PrpR and GlnR of Mycobacterium neoaurum. Zhang Y; Zhou X; Wang X; Wang L; Xia M; Luo J; Shen Y; Wang M Microb Cell Fact; 2020 Jan; 19(1):13. PubMed ID: 31992309 [TBL] [Abstract][Full Text] [Related]
16. Acetate Dissimilation and Assimilation in Mycobacterium tuberculosis Depend on Carbon Availability. Rücker N; Billig S; Bücker R; Jahn D; Wittmann C; Bange FC J Bacteriol; 2015 Oct; 197(19):3182-90. PubMed ID: 26216844 [TBL] [Abstract][Full Text] [Related]
17. Investigation of central carbon metabolism and the 2-methylcitrate cycle in Corynebacterium glutamicum by metabolic profiling using gas chromatography-mass spectrometry. Plassmeier J; Barsch A; Persicke M; Niehaus K; Kalinowski J J Biotechnol; 2007 Jul; 130(4):354-63. PubMed ID: 17586079 [TBL] [Abstract][Full Text] [Related]
18. ¹³C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation. Beste DJ; Bonde B; Hawkins N; Ward JL; Beale MH; Noack S; Nöh K; Kruger NJ; Ratcliffe RG; McFadden J PLoS Pathog; 2011 Jul; 7(7):e1002091. PubMed ID: 21814509 [TBL] [Abstract][Full Text] [Related]
19. Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis. Noy T; Vergnolle O; Hartman TE; Rhee KY; Jacobs WR; Berney M; Blanchard JS J Biol Chem; 2016 Mar; 291(13):7060-9. PubMed ID: 26858255 [TBL] [Abstract][Full Text] [Related]
20. Modulation of Central Carbon Metabolism by Acetylation of Isocitrate Lyase in Mycobacterium tuberculosis. Bi J; Wang Y; Yu H; Qian X; Wang H; Liu J; Zhang X Sci Rep; 2017 Mar; 7():44826. PubMed ID: 28322251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]