These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 35012917)
1. [Photothermal effect of nano-copper sulfide against tongue squamous cell carcinoma]. Chen D; Chen Z; Wang Z; Yang Y; Jiang Y; Hu C Nan Fang Yi Ke Da Xue Xue Bao; 2021 Dec; 41(12):1843-1849. PubMed ID: 35012917 [TBL] [Abstract][Full Text] [Related]
2. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy. Bai J; Liu Y; Jiang X Biomaterials; 2014 Jul; 35(22):5805-13. PubMed ID: 24767788 [TBL] [Abstract][Full Text] [Related]
3. Albumin-Bioinspired Gd:CuS Nanotheranostic Agent for In Vivo Photoacoustic/Magnetic Resonance Imaging-Guided Tumor-Targeted Photothermal Therapy. Yang W; Guo W; Le W; Lv G; Zhang F; Shi L; Wang X; Wang J; Wang S; Chang J; Zhang B ACS Nano; 2016 Nov; 10(11):10245-10257. PubMed ID: 27791364 [TBL] [Abstract][Full Text] [Related]
4. Strong Near-Infrared Absorbing and Biocompatible CuS Nanoparticles for Rapid and Efficient Photothermal Ablation of Gram-Positive and -Negative Bacteria. Huang J; Zhou J; Zhuang J; Gao H; Huang D; Wang L; Wu W; Li Q; Yang DP; Han MY ACS Appl Mater Interfaces; 2017 Oct; 9(42):36606-36614. PubMed ID: 28976189 [TBL] [Abstract][Full Text] [Related]
5. Copper sulfide nanoparticles with phospholipid-PEG coating for in vivo near-infrared photothermal cancer therapy. Huang Y; Lai Y; Shi S; Hao S; Wei J; Chen X Chem Asian J; 2015 Feb; 10(2):370-6. PubMed ID: 25425287 [TBL] [Abstract][Full Text] [Related]
6. BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo. Zhang C; Fu YY; Zhang X; Yu C; Zhao Y; Sun SK Dalton Trans; 2015 Aug; 44(29):13112-8. PubMed ID: 26106950 [TBL] [Abstract][Full Text] [Related]
7. Biocompatible tumor-targeting nanocomposites based on CuS for tumor imaging and photothermal therapy. Liang L; Peng S; Yuan Z; Wei C; He Y; Zheng J; Gu Y; Chen H RSC Adv; 2018 Feb; 8(11):6013-6026. PubMed ID: 35539596 [TBL] [Abstract][Full Text] [Related]
8. Photothermal effects of CuS-BSA nanoparticles on H22 hepatoma-bearing mice. Dun X; Liu S; Ge N; Liu M; Li M; Zhang J; Bao H; Li B; Zhang H; Cui L Front Pharmacol; 2022; 13():1029986. PubMed ID: 36313308 [TBL] [Abstract][Full Text] [Related]
9. Hollow Mesoporous Silica Nanoparticles Gated by Chitosan-Copper Sulfide Composites as Theranostic Agents for the Treatment of Breast Cancer. Niu S; Zhang X; Williams GR; Wu J; Gao F; Fu Z; Chen X; Lu S; Zhu LM Acta Biomater; 2021 May; 126():408-420. PubMed ID: 33731303 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the therapeutic efficacy of radiolabeled BSA@CuS nanoparticle-induced radio-photothermal therapy against anaplastic thyroid cancer. Zhang C; Chai J; Jia Q; Tan J; Meng Z; Li N; Yuan M IUBMB Life; 2022 May; 74(5):433-445. PubMed ID: 35112451 [TBL] [Abstract][Full Text] [Related]
11. [Natural melanin-based nanoparticles with photothermal/photodynamic activities induce ovarian cancer cell death]. Yang J; Chen X Nan Fang Yi Ke Da Xue Xue Bao; 2022 Nov; 42(11):1681-1688. PubMed ID: 36504061 [TBL] [Abstract][Full Text] [Related]
12. Biocompatible copper sulfide-based nanocomposites for artery interventional chemo-photothermal therapy of orthotropic hepatocellular carcinoma. Li X; Yuan HJ; Tian XM; Tang J; Liu LF; Liu FY Mater Today Bio; 2021 Sep; 12():100128. PubMed ID: 34632360 [TBL] [Abstract][Full Text] [Related]
13. Fe3O4@mSiO2-FA-CuS-PEG nanocomposites for magnetic resonance imaging and targeted chemo-photothermal synergistic therapy of cancer cells. Gao Z; Liu X; Deng G; Zhou F; Zhang L; Wang Q; Lu J Dalton Trans; 2016 Sep; 45(34):13456-65. PubMed ID: 27493065 [TBL] [Abstract][Full Text] [Related]
14. Hybrid membrane camouflaged copper sulfide nanoparticles for photothermal-chemotherapy of hepatocellular carcinoma. Ji B; Cai H; Yang Y; Peng F; Song M; Sun K; Yan F; Liu Y Acta Biomater; 2020 Jul; 111():363-372. PubMed ID: 32434082 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Antibacterial Activity of CuS-BSA/Lysozyme under Near Infrared Light Irradiation. Swaidan A; Ghayyem S; Barras A; Addad A; Szunerits S; Boukherroub R Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578471 [TBL] [Abstract][Full Text] [Related]
16. Multifunctional nanoparticles precisely reprogram the tumor microenvironment and potentiate antitumor immunotherapy after near-infrared-II light-mediated photothermal therapy. Ge Y; Zhang J; Jin K; Ye Z; Wang W; Zhou Z; Ye J Acta Biomater; 2023 Sep; 167():551-563. PubMed ID: 37302731 [TBL] [Abstract][Full Text] [Related]
17. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Li Y; Lu W; Huang Q; Huang M; Li C; Chen W Nanomedicine (Lond); 2010 Oct; 5(8):1161-71. PubMed ID: 21039194 [TBL] [Abstract][Full Text] [Related]
18. Photosensitizer-assembled PEGylated graphene-copper sulfide nanohybrids as a synergistic near-infrared phototherapeutic agent. Wu C; Zhu A; Li D; Wang L; Yang H; Zeng H; Liu Y Expert Opin Drug Deliv; 2016; 13(1):155-65. PubMed ID: 26559178 [TBL] [Abstract][Full Text] [Related]
19. Tumor-targeting CuS nanoparticles for multimodal imaging and guided photothermal therapy of lymph node metastasis. Shi H; Yan R; Wu L; Sun Y; Liu S; Zhou Z; He J; Ye D Acta Biomater; 2018 May; 72():256-265. PubMed ID: 29588255 [TBL] [Abstract][Full Text] [Related]