BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 35013029)

  • 1. Possibilities and challenges of small molecule organic compounds for the treatment of repeat diseases.
    Nakatani K
    Proc Jpn Acad Ser B Phys Biol Sci; 2022; 98(1):30-48. PubMed ID: 35013029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CAG repeat RNA as an auxiliary toxic agent in polyglutamine disorders.
    Wojciechowska M; Krzyzosiak WJ
    RNA Biol; 2011; 8(4):565-71. PubMed ID: 21593608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA FISH for detecting expanded repeats in human diseases.
    Urbanek MO; Krzyzosiak WJ
    Methods; 2016 Apr; 98():115-123. PubMed ID: 26615955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No association of the SCA1 (CAG)31 allele with Huntington's disease, myotonic dystrophy type 1 and spinocerebellar ataxia type 3.
    Hellenbroich Y; Kaulich M; Opitz S; Schwinger E; Zühlke C
    Psychiatr Genet; 2004 Jun; 14(2):61-3. PubMed ID: 15167689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Length-dependent CTG·CAG triplet-repeat expansion in myotonic dystrophy patient-derived induced pluripotent stem cells.
    Du J; Campau E; Soragni E; Jespersen C; Gottesfeld JM
    Hum Mol Genet; 2013 Dec; 22(25):5276-87. PubMed ID: 23933738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-mediated neuromuscular disorders.
    Ranum LP; Cooper TA
    Annu Rev Neurosci; 2006; 29():259-77. PubMed ID: 16776586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of Small Molecules on Repeat RNA Toxicity in Animal Models].
    Nakatani K
    Brain Nerve; 2022 Jan; 74(1):85-91. PubMed ID: 34992179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coincident trinucleotide repeat expansions in a patient with myotonic dystrophy type 1 and spinocerebellar ataxia.
    Kolb SJ; Kissel JT
    J Clin Neuromuscul Dis; 2008 Sep; 10(1):22-3. PubMed ID: 18772697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsatellite repeat instability and neurological disease.
    Brouwer JR; Willemsen R; Oostra BA
    Bioessays; 2009 Jan; 31(1):71-83. PubMed ID: 19154005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CAG repeats mimic CUG repeats in the misregulation of alternative splicing.
    Mykowska A; Sobczak K; Wojciechowska M; Kozlowski P; Krzyzosiak WJ
    Nucleic Acids Res; 2011 Nov; 39(20):8938-51. PubMed ID: 21795378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target.
    Krzyzosiak WJ; Sobczak K; Wojciechowska M; Fiszer A; Mykowska A; Kozlowski P
    Nucleic Acids Res; 2012 Jan; 40(1):11-26. PubMed ID: 21908410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular toxicity of expanded RNA repeats: focus on RNA foci.
    Wojciechowska M; Krzyzosiak WJ
    Hum Mol Genet; 2011 Oct; 20(19):3811-21. PubMed ID: 21729883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cyclic pyrrole-imidazole polyamide reduces pathogenic RNA in CAG/CTG triplet repeat neurological disease models.
    Ikenoshita S; Matsuo K; Yabuki Y; Kawakubo K; Asamitsu S; Hori K; Usuki S; Hirose Y; Bando T; Araki K; Ueda M; Sugiyama H; Shioda N
    J Clin Invest; 2023 Nov; 133(22):. PubMed ID: 37707954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The unstable repeats--three evolving faces of neurological disease.
    Nelson DL; Orr HT; Warren ST
    Neuron; 2013 Mar; 77(5):825-43. PubMed ID: 23473314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dominantly inherited, non-coding microsatellite expansion disorders.
    Ranum LP; Day JW
    Curr Opin Genet Dev; 2002 Jun; 12(3):266-71. PubMed ID: 12076668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triplet repeats, RNA secondary structure and toxic gain-of-function models for pathogenesis.
    Galvão R; Mendes-Soares L; Câmara J; Jaco I; Carmo-Fonseca M
    Brain Res Bull; 2001 Oct-Nov 1; 56(3-4):191-201. PubMed ID: 11719250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of CAG repeat instability in the central nervous system and periphery in Huntington's disease and in spinocerebellar ataxia type 1.
    Mouro Pinto R; Arning L; Giordano JV; Razghandi P; Andrew MA; Gillis T; Correia K; Mysore JS; Grote Urtubey DM; Parwez CR; von Hein SM; Clark HB; Nguyen HP; Förster E; Beller A; Jayadaev S; Keene CD; Bird TD; Lucente D; Vonsattel JP; Orr H; Saft C; Petrasch-Parwez E; Wheeler VC
    Hum Mol Genet; 2020 Aug; 29(15):2551-2567. PubMed ID: 32761094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Plant-derived Alkaloids with Therapeutic Potential for Myotonic Dystrophy Type I.
    Herrendorff R; Faleschini MT; Stiefvater A; Erne B; Wiktorowicz T; Kern F; Hamburger M; Potterat O; Kinter J; Sinnreich M
    J Biol Chem; 2016 Aug; 291(33):17165-77. PubMed ID: 27298317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise small-molecule cleavage of an r(CUG) repeat expansion in a myotonic dystrophy mouse model.
    Angelbello AJ; Rzuczek SG; Mckee KK; Chen JL; Olafson H; Cameron MD; Moss WN; Wang ET; Disney MD
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7799-7804. PubMed ID: 30926669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased (CTG/CAG)(n) lengths in myotonic dystrophy type 1 and Machado-Joseph disease genes in idiopathic azoospermia patients.
    Pan H; Li YY; Li TC; Tsai WT; Li SY; Hsiao KM
    Hum Reprod; 2002 Jun; 17(6):1578-83. PubMed ID: 12042281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.