These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 35013029)

  • 41. Genetic instabilities of (CCTG).(CAGG) and (ATTCT).(AGAAT) disease-associated repeats reveal multiple pathways for repeat deletion.
    Edwards SF; Hashem VI; Klysik EA; Sinden RR
    Mol Carcinog; 2009 Apr; 48(4):336-49. PubMed ID: 19306311
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Triplet repeats in transcripts: structural insights into RNA toxicity.
    Galka-Marciniak P; Urbanek MO; Krzyzosiak WJ
    Biol Chem; 2012 Nov; 393(11):1299-315. PubMed ID: 23052488
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice.
    Tomé S; Manley K; Simard JP; Clark GW; Slean MM; Swami M; Shelbourne PF; Tillier ER; Monckton DG; Messer A; Pearson CE
    PLoS Genet; 2013; 9(2):e1003280. PubMed ID: 23468640
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ubiquitous expression of CUG or CAG trinucleotide repeat RNA causes common morphological defects in a Drosophila model of RNA-mediated pathology.
    Lawlor KT; O'Keefe LV; Samaraweera SE; van Eyk CL; Richards RI
    PLoS One; 2012; 7(6):e38516. PubMed ID: 22715390
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Trinucleotide repeat expansion in neurological disease.
    La Spada AR; Paulson HL; Fischbeck KH
    Ann Neurol; 1994 Dec; 36(6):814-22. PubMed ID: 7998766
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Non-ATG-initiated translation directed by microsatellite expansions.
    Zu T; Gibbens B; Doty NS; Gomes-Pereira M; Huguet A; Stone MD; Margolis J; Peterson M; Markowski TW; Ingram MA; Nan Z; Forster C; Low WC; Schoser B; Somia NV; Clark HB; Schmechel S; Bitterman PB; Gourdon G; Swanson MS; Moseley M; Ranum LP
    Proc Natl Acad Sci U S A; 2011 Jan; 108(1):260-5. PubMed ID: 21173221
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expanded DNA and RNA Trinucleotide Repeats in Myotonic Dystrophy Type 1 Select Their Own Multitarget, Sequence-Selective Inhibitors.
    Hagler LD; Luu LM; Tonelli M; Lee J; Hayes SM; Bonson SE; Vergara JI; Butcher SE; Zimmerman SC
    Biochemistry; 2020 Sep; 59(37):3463-3472. PubMed ID: 32856901
    [TBL] [Abstract][Full Text] [Related]  

  • 48. RNA gain-of-function in spinocerebellar ataxia type 8.
    Daughters RS; Tuttle DL; Gao W; Ikeda Y; Moseley ML; Ebner TJ; Swanson MS; Ranum LP
    PLoS Genet; 2009 Aug; 5(8):e1000600. PubMed ID: 19680539
    [TBL] [Abstract][Full Text] [Related]  

  • 49. RNA structure of trinucleotide repeats associated with human neurological diseases.
    Sobczak K; de Mezer M; Michlewski G; Krol J; Krzyzosiak WJ
    Nucleic Acids Res; 2003 Oct; 31(19):5469-82. PubMed ID: 14500809
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In Vitro Synthesis and RNA Structure Probing of CUG Triplet Repeat RNA.
    van Cruchten RTP; Wansink DG
    Methods Mol Biol; 2020; 2056():187-202. PubMed ID: 31586349
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spinocerebellar ataxia 7 (SCA7).
    Lebre AS; Brice A
    Cytogenet Genome Res; 2003; 100(1-4):154-63. PubMed ID: 14526176
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Triplet repeat-derived siRNAs enhance RNA-mediated toxicity in a Drosophila model for myotonic dystrophy.
    Yu Z; Teng X; Bonini NM
    PLoS Genet; 2011 Mar; 7(3):e1001340. PubMed ID: 21437269
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RNA-dominant diseases.
    Osborne RJ; Thornton CA
    Hum Mol Genet; 2006 Oct; 15 Spec No 2():R162-9. PubMed ID: 16987879
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gain of RNA function in pathological cases: Focus on myotonic dystrophy.
    Klein AF; Gasnier E; Furling D
    Biochimie; 2011 Nov; 93(11):2006-12. PubMed ID: 21763392
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Methods of determination of the number of CTG/CAG repeats in trinucleotide repeats in the human genome].
    Falk M; Froster U; Vojtísková M
    Cas Lek Cesk; 2003; 142(10):609-14. PubMed ID: 14635426
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Repeat RNA expansion disorders of the nervous system: post-transcriptional mechanisms and therapeutic strategies.
    Schwartz JL; Jones KL; Yeo GW
    Crit Rev Biochem Mol Biol; 2021 Feb; 56(1):31-53. PubMed ID: 33172304
    [TBL] [Abstract][Full Text] [Related]  

  • 57. FAN1 exo- not endo-nuclease pausing on disease-associated slipped-DNA repeats: A mechanism of repeat instability.
    Deshmukh AL; Caron MC; Mohiuddin M; Lanni S; Panigrahi GB; Khan M; Engchuan W; Shum N; Faruqui A; Wang P; Yuen RKC; Nakamori M; Nakatani K; Masson JY; Pearson CE
    Cell Rep; 2021 Dec; 37(10):110078. PubMed ID: 34879276
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Molecular basis of spinocerebellar ataxias subtype caused by nucleotide repeat expansion in noncoding region].
    Wang JL; Tang BS
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2008 Jun; 25(3):293-6. PubMed ID: 18543219
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploring the Potential of Small Molecule-Based Therapeutic Approaches for Targeting Trinucleotide Repeat Disorders.
    Verma AK; Khan E; Bhagwat SR; Kumar A
    Mol Neurobiol; 2020 Jan; 57(1):566-584. PubMed ID: 31399954
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Germ-line CAG repeat instability causes extreme CAG repeat expansion with infantile-onset spinocerebellar ataxia type 2.
    Vinther-Jensen T; Ek J; Duno M; Skovby F; Hjermind LE; Nielsen JE; Nielsen TT
    Eur J Hum Genet; 2013 Jun; 21(6):626-9. PubMed ID: 23047744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.