These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 35013269)

  • 1. Streamlined single-cell proteomics by an integrated microfluidic chip and data-independent acquisition mass spectrometry.
    Gebreyesus ST; Siyal AA; Kitata RB; Chen ES; Enkhbayar B; Angata T; Lin KI; Chen YJ; Tu HL
    Nat Commun; 2022 Jan; 13(1):37. PubMed ID: 35013269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.
    Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R
    J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated microscale analysis system for targeted liquid chromatography mass spectrometry proteomics on limited amounts of enriched cell populations.
    Martin JG; Rejtar T; Martin SA
    Anal Chem; 2013 Nov; 85(22):10680-5. PubMed ID: 24083476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoliter-Scale Sample Preparation for Single-Cell Proteomic Analysis Using Glass-Oil-Air-Droplet Chip.
    Zhu L; Wong CCL
    Methods Mol Biol; 2024; 2817():45-56. PubMed ID: 38907146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Sample Preparation for Multiplexed Single-Cell Proteomics Using a Nested Nanowell Chip.
    Park J; Cheung TK; Zhu Y
    Methods Mol Biol; 2024; 2823():141-154. PubMed ID: 39052219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Automated Nanowell-Array Workflow for Quantitative Multiplexed Single-Cell Proteomics Sample Preparation at High Sensitivity.
    Ctortecka C; Hartlmayr D; Seth A; Mendjan S; Tourniaire G; Udeshi ND; Carr SA; Mechtler K
    Mol Cell Proteomics; 2023 Dec; 22(12):100665. PubMed ID: 37839701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Optimized Data-Independent Acquisition Strategy for Comprehensive Analysis of Human Plasma Proteome.
    Fang H; Greening DW
    Methods Mol Biol; 2023; 2628():93-107. PubMed ID: 36781781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AutoProteome Chip System for Fully Automated and Integrated Proteomics Sample Preparation and Peptide Fractionation.
    Lu X; Wang Z; Gao Y; Chen W; Wang L; Huang P; Gao W; Ke M; He A; Tian R
    Anal Chem; 2020 Jul; 92(13):8893-8900. PubMed ID: 32490667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniaturized sample preparation on a digital microfluidics device for sensitive bottom-up microproteomics of mammalian cells using magnetic beads and mass spectrometry-compatible surfactants.
    Leipert J; Tholey A
    Lab Chip; 2019 Oct; 19(20):3490-3498. PubMed ID: 31531506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-Independent Acquisition Peptidomics.
    Bichmann L; Gupta S; Röst H
    Methods Mol Biol; 2024; 2758():77-88. PubMed ID: 38549009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic-Mass Spectrometry Interfaces for Translational Proteomics.
    Pedde RD; Li H; Borchers CH; Akbari M
    Trends Biotechnol; 2017 Oct; 35(10):954-970. PubMed ID: 28755975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A data-independent acquisition (DIA)-based quantification workflow for proteome analysis of 5000 cells.
    Jiang N; Gao Y; Xu J; Luo F; Zhang X; Chen R
    J Pharm Biomed Anal; 2022 Jul; 216():114795. PubMed ID: 35489320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Rapid One-Pot Workflow for Sensitive Microscale Phosphoproteomics.
    Muneer G; Chen CS; Lee TT; Chen BY; Chen YJ
    J Proteome Res; 2024 Aug; 23(8):3294-3309. PubMed ID: 39038167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic chips for mass spectrometry-based proteomics.
    Lee J; Soper SA; Murray KK
    J Mass Spectrom; 2009 May; 44(5):579-93. PubMed ID: 19373851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS.
    Moon H; Wheeler AR; Garrell RL; Loo JA; Kim CJ
    Lab Chip; 2006 Sep; 6(9):1213-9. PubMed ID: 16929401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel sample processing for mass spectrometry-based single cell proteomics.
    Wang J; Xue B; Awoyemi O; Yuliantoro H; Mendis LT; DeVor A; Valentine SJ; Li P
    Anal Chim Acta; 2024 Nov; 1329():343241. PubMed ID: 39396304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microproteomics with microfluidic-based cell sorting: Application to 1000 and 100 immune cells.
    Kasuga K; Katoh Y; Nagase K; Igarashi K
    Proteomics; 2017 Jul; 17(13-14):. PubMed ID: 28556466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-Independent Acquisition: A Milestone and Prospect in Clinical Mass Spectrometry-Based Proteomics.
    Fröhlich K; Fahrner M; Brombacher E; Seredynska A; Maldacker M; Kreutz C; Schmidt A; Schilling O
    Mol Cell Proteomics; 2024 Aug; 23(8):100800. PubMed ID: 38880244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic Analysis of Single Mammalian Cells Enabled by Microfluidic Nanodroplet Sample Preparation and Ultrasensitive NanoLC-MS.
    Zhu Y; Clair G; Chrisler WB; Shen Y; Zhao R; Shukla AK; Moore RJ; Misra RS; Pryhuber GS; Smith RD; Ansong C; Kelly RT
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12370-12374. PubMed ID: 29797682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Methods and applications of single-cell proteomics analysis based on mass spectrometry].
    Qin S; Bai Y; Liu H
    Se Pu; 2021 Feb; 39(2):142-151. PubMed ID: 34227347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.