BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 35013269)

  • 1. Streamlined single-cell proteomics by an integrated microfluidic chip and data-independent acquisition mass spectrometry.
    Gebreyesus ST; Siyal AA; Kitata RB; Chen ES; Enkhbayar B; Angata T; Lin KI; Chen YJ; Tu HL
    Nat Commun; 2022 Jan; 13(1):37. PubMed ID: 35013269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.
    Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R
    J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated microscale analysis system for targeted liquid chromatography mass spectrometry proteomics on limited amounts of enriched cell populations.
    Martin JG; Rejtar T; Martin SA
    Anal Chem; 2013 Nov; 85(22):10680-5. PubMed ID: 24083476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoliter-Scale Sample Preparation for Single-Cell Proteomic Analysis Using Glass-Oil-Air-Droplet Chip.
    Zhu L; Wong CCL
    Methods Mol Biol; 2024; 2817():45-56. PubMed ID: 38907146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Automated Nanowell-Array Workflow for Quantitative Multiplexed Single-Cell Proteomics Sample Preparation at High Sensitivity.
    Ctortecka C; Hartlmayr D; Seth A; Mendjan S; Tourniaire G; Udeshi ND; Carr SA; Mechtler K
    Mol Cell Proteomics; 2023 Dec; 22(12):100665. PubMed ID: 37839701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Optimized Data-Independent Acquisition Strategy for Comprehensive Analysis of Human Plasma Proteome.
    Fang H; Greening DW
    Methods Mol Biol; 2023; 2628():93-107. PubMed ID: 36781781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AutoProteome Chip System for Fully Automated and Integrated Proteomics Sample Preparation and Peptide Fractionation.
    Lu X; Wang Z; Gao Y; Chen W; Wang L; Huang P; Gao W; Ke M; He A; Tian R
    Anal Chem; 2020 Jul; 92(13):8893-8900. PubMed ID: 32490667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miniaturized sample preparation on a digital microfluidics device for sensitive bottom-up microproteomics of mammalian cells using magnetic beads and mass spectrometry-compatible surfactants.
    Leipert J; Tholey A
    Lab Chip; 2019 Oct; 19(20):3490-3498. PubMed ID: 31531506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-Independent Acquisition Peptidomics.
    Bichmann L; Gupta S; Röst H
    Methods Mol Biol; 2024; 2758():77-88. PubMed ID: 38549009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic-Mass Spectrometry Interfaces for Translational Proteomics.
    Pedde RD; Li H; Borchers CH; Akbari M
    Trends Biotechnol; 2017 Oct; 35(10):954-970. PubMed ID: 28755975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A data-independent acquisition (DIA)-based quantification workflow for proteome analysis of 5000 cells.
    Jiang N; Gao Y; Xu J; Luo F; Zhang X; Chen R
    J Pharm Biomed Anal; 2022 Jul; 216():114795. PubMed ID: 35489320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic chips for mass spectrometry-based proteomics.
    Lee J; Soper SA; Murray KK
    J Mass Spectrom; 2009 May; 44(5):579-93. PubMed ID: 19373851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS.
    Moon H; Wheeler AR; Garrell RL; Loo JA; Kim CJ
    Lab Chip; 2006 Sep; 6(9):1213-9. PubMed ID: 16929401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microproteomics with microfluidic-based cell sorting: Application to 1000 and 100 immune cells.
    Kasuga K; Katoh Y; Nagase K; Igarashi K
    Proteomics; 2017 Jul; 17(13-14):. PubMed ID: 28556466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic Analysis of Single Mammalian Cells Enabled by Microfluidic Nanodroplet Sample Preparation and Ultrasensitive NanoLC-MS.
    Zhu Y; Clair G; Chrisler WB; Shen Y; Zhao R; Shukla AK; Moore RJ; Misra RS; Pryhuber GS; Smith RD; Ansong C; Kelly RT
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12370-12374. PubMed ID: 29797682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Methods and applications of single-cell proteomics analysis based on mass spectrometry].
    Qin S; Bai Y; Liu H
    Se Pu; 2021 Feb; 39(2):142-151. PubMed ID: 34227347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics Coupled Mass Spectrometry for Single Cell Multi-Omics.
    Zhang D; Qiao L
    Small Methods; 2024 Jan; 8(1):e2301179. PubMed ID: 37840412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fully automated FAIMS-DIA mass spectrometry-based proteomic pipeline.
    Reilly L; Lara E; Ramos D; Li Z; Pantazis CB; Stadler J; Santiana M; Roberts J; Faghri F; Hao Y; Nalls MA; Narayan P; Liu Y; Singleton AB; Cookson MR; Ward ME; Qi YA
    Cell Rep Methods; 2023 Oct; 3(10):100593. PubMed ID: 37729920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovering Protein Biomarkers from Clinical Peripheral Blood Mononuclear Cells Using Data-Independent Acquisition Mass Spectrometry.
    Ku X; Yan W
    Methods Mol Biol; 2019; 1959():151-161. PubMed ID: 30852821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Coupling of Nanodroplet Sample Preparation with Liquid Chromatography-Mass Spectrometry for High-Throughput Single-Cell Proteomics.
    Williams SM; Liyu AV; Tsai CF; Moore RJ; Orton DJ; Chrisler WB; Gaffrey MJ; Liu T; Smith RD; Kelly RT; Pasa-Tolic L; Zhu Y
    Anal Chem; 2020 Aug; 92(15):10588-10596. PubMed ID: 32639140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.